Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 110044, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883824

RESUMO

The dorsolateral striatum (DLS) is important for performing actions persistently, even when it becomes suboptimal, reflecting a function that is reflexive and habitual. However, there are also ways in which persistent behaviors can result from a more prospective, planning mode of behavior. To help tease apart these possibilities for DLS function, we trained animals to perform a lever press for reward and then inhibited the DLS in key test phases: as the task shifted from a 1-press to a 3-press rule (upshift), as the task was maintained, as the task shifted back to the one-press rule (downshift), and when rewards came independent of pressing. During DLS inhibition, animals always favored their initially learned strategy to press just once, particularly so during the free-reward period. DLS inhibition surprisingly changed performance speed bidirectionally depending on the task shifts. DLS inhibition thus encouraged habitual behavior, suggesting it could normally help adapt to changing conditions.

2.
Nat Biomed Eng ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500749

RESUMO

Multimodal sensory feedback from upper-limb prostheses can increase their function and usability. Here we show that intuitive thermal perceptions during cold-object grasping with a prosthesis can be restored in a phantom hand through targeted nerve stimulation via a wearable thin-film thermoelectric device with high cooling power density and speed. We found that specific regions of the residual limb, when thermally stimulated, elicited thermal sensations in the phantom hand that remained stable beyond 48 weeks. We also found stimulation sites that selectively elicited sensations of temperature, touch or both, depending on whether the stimulation was thermal or mechanical. In closed-loop functional tasks involving the identification of cold objects by amputees and by non-amputee participants, and compared with traditional bulk thermoelectric devices, the wearable thin-film device reliably elicited cooling sensations that were up to 8 times faster and up to 3 times greater in intensity while using half the energy and 1/600th the mass of active thermoelectric material. Wearable thin-film thermoelectric devices may allow for the non-invasive restoration of thermal perceptions during touch.

3.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711550

RESUMO

The dorsolateral striatum (DLS) is linked to the learning and honing of action routines. However, the DLS is also important for performing behaviors that have been successful in the past. The learning function can be thought of as prospective, helping to plan ongoing actions to be efficient and often optimal. The performance function is more retrospective, helping the animal continue to behave in a way that had worked previously. How the DLS manages this all is curious. What happens when a learned behavior becomes sub-optimal due to environment changes. In this case, the prospective function of the DLS would cause animals to (adaptively) learn and plan more optimal actions. In contrast, the retrospective function would cause animals to (maladaptively) favor the old behavior. Here we find that, during a change in learned task rules, DLS inhibition causes animals to adjust less rapidly to the new task (and to behave less vigorously) in a 'maladaptive' way. Yet, when the task is changed back to the initially learned rules, DLS inhibition instead causes a rapid and vigorous adjustment of behavior in an 'adaptive' way. These results show that inhibiting the DLS biases behavior towards initially acquired strategies, implying a more retrospective outlook in action selection when the DLS is offline. Thus, an active DLS could encourage planning and learning action routines more prospectively. Moreover, the DLS control over behavior can appear to be either advantageous/flexible or disadvantageous/inflexible depending on task context, and its control over vigor can change depending on task context. Significant Statement: Basal ganglia networks aid behavioral learning (a prospective planning function) but also favor the use of old behaviors (a retrospective performance function), making it unclear what happens when learned behaviors become suboptimal. Here we inhibit the dorsolateral striatum (DLS) as animals encounter a change in task rules, and again when they shift back to those learned task rules. DLS inhibition reduces adjustment to new task rules (and reduces behavioral vigor), but it increases adjustment back to the initially learned task rules later (and increases vigor). Thus, in both cases, DLS inhibition favored the use of the initially learned behavioral strategy, which could appear either maladaptive or adaptive. We suggest that the DLS might promote a prospective orientation of action control.

4.
J Neurosci ; 40(10): 2139-2153, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969469

RESUMO

Despite clear evidence linking the basal ganglia to the control of outcome insensitivity (i.e., habit) and behavioral vigor (i.e., its behavioral speed/fluidity), it remains unclear whether or how these functions relate to one another. Here, using male Long-Evans rats in response-based and cue-based maze-running tasks, we demonstrate that phasic dorsolateral striatum (DLS) activity occurring at the onset of a learned behavior regulates how vigorous and habitual it is. In a response-based task, brief optogenetic excitation at the onset of runs decreased run duration and the occurrence of deliberative behaviors, whereas midrun stimulation carried little effect. Outcome devaluation showed these runs to be habitual. DLS inhibition at run start did not produce robust effects on behavior until after outcome devaluation. At that time, when the DLS was plausibly most critically required for performance (i.e., habitual), inhibition reduced performance vigor measures and caused a dramatic loss of habitual responding (i.e., animals quit the task). In a second cue-based "beacon" task requiring behavior initiation at the start of the run and again in the middle of the run, DLS excitation at both time points could improve the vigor of runs. Postdevaluation testing showed behavior on the beacon task to be habitual as well. This pattern of results suggests that one role for phasic DLS activity at behavior initiation is to promote the execution of the behavior in a vigorous and habitual fashion by a diverse set of measures.SIGNIFICANCE STATEMENT Our research expands the literature twofold. First, we find that features of a habitual behavior that are typically studied separately (i.e., maze response performance, deliberation movements, running vigor, and outcome insensitivity) are quite closely linked together. Second, efforts have been made to understand "what" the dorsolateral striatum (DLS) does for habitual behavior, and our research provides a key set of results showing "when" it is important (i.e., at behavior initiation). By showing such dramatic control over habits by DLS activity in a phasic time window, plausible real-world applications could involve more informed DLS perturbations to curb intractably problematic habits.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Hábitos , Animais , Masculino , Ratos , Ratos Long-Evans
5.
Behav Neurosci ; 133(5): 496-507, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31169384

RESUMO

Nearly all species rely on visual and nonvisual cues to guide navigation, and which ones they use depend on the environment and task demands. The postsubiculum (PoS) is a crucial brain region for the use of visual cues, but its role in the use of self-movement cues is less clear. We therefore evaluated rats' navigational performance on a food-carrying task in light and in darkness in rats that had bilateral neurotoxic lesions of the PoS. Animals were trained postoperatively to exit a refuge and search for a food pellet, and carry it back to the refuge for consumption. In both light and darkness, control and PoS-lesioned rats made circuitous outward journeys as they searched for food. However, only control rats were able to accurately use visual or self-movement cues to make relatively direct returns to the home refuge. These results suggest the PoS's role in navigation is not limited to the use of visual cues, but also includes the use of self-movement cues. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Hipocampo/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Movimento , Orientação , Ratos , Ratos Long-Evans , Percepção Espacial , Comportamento Espacial , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...