Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37239328

RESUMO

There is significant interest in the use of miRNA analysis for forensic body fluid identification. Demonstrated co-extraction and detection in DNA extracts could make the use of miRNAs a more streamlined molecular body fluid identification method than other RNA-based methods. We previously reported a reverse transcription-quantitative PCR (RT-qPCR) panel of eight miRNAs that classified venous and menstrual blood, feces, urine, saliva, semen, and vaginal secretions using a quadratic discriminant analysis (QDA) model with 93% accuracy in RNA extracts. Herein, miRNA expression in DNA extracts from 50 donors of each body fluid were tested using the model. Initially, a classification rate of 87% was obtained, which increased to 92% when three additional miRNAs were added. Body fluid identification was found to be reliable across population samples of mixed ages, ethnicities, and sex, with 72-98% of the unknown samples classifying correctly. The model was then tested against compromised samples and over biological cycles, where classification accuracy varied, depending on the body fluid. In conclusion, we demonstrated the ability to classify body fluids using miRNA expression from DNA extracts, eliminating the need for RNA extraction, greatly reducing evidentiary sample consumption and processing time in forensic laboratories, but acknowledge that compromised semen and saliva samples can fail to classify properly, and mixed sample classification remains untested and may have limitations.


Assuntos
Líquidos Corporais , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/análise , Análise Discriminante , Genética Forense/métodos , Líquidos Corporais/química , Fezes , DNA/genética
2.
Forensic Sci Int Genet ; 59: 102692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366474

RESUMO

Body fluid identification is an important step in the forensic DNA workflow, and more advanced methods, such as microRNA (miRNA) analysis, have been research topics within the community over the last few decades. We previously reported a reverse transcription-quantitative PCR (RT-qPCR) panel of eight miRNAs that could classify blood, menstrual secretions, feces, urine, saliva, semen, and vaginal secretions through analysis of differential gene expression. The purpose of this project was to evaluate this panel in a larger population size, develop a more statistically robust analysis method and perform a series of developmental validation studies. Each of the eight miRNA markers was analyzed in > 40 donors each of blood, menstrual secretions, feces, urine, saliva, semen, and vaginal secretions. A 10-fold cross-validated quadratic discriminant analysis (QDA) model yielded the highest classification accuracy of 93% after eliminating miR-26b and miR-1246 from the panel. Accuracy of body fluid predictions was between 84% and 100% when various population demographics and samples from the same donor over multiple time periods were evaluated, but the assay demonstrated limited scope and reduced accuracy when mixed body fluid samples were tested. Limit of detection was found to be less than 104 copies/µL across multiple commercially available RT-qPCR analysis methods. These data suggest that miR-200b, miR-320c, miR-10b, and miR-891a, when normalized to let-7 g and let-7i, can consistently and robustly classify blood, feces and urine, but additional work is important to improve classification of saliva, semen, and female intimate secretions before implementation in forensic casework.


Assuntos
Líquidos Corporais , MicroRNAs , Líquidos Corporais/química , Análise Discriminante , Feminino , Genética Forense/métodos , Humanos , Masculino , MicroRNAs/metabolismo , Saliva/química , Sêmen/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...