Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2316284121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442176

RESUMO

Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are, and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungus Metarhizium robertsii during experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome-but no other-was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis, we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment between M. robertsii and another congeneric insect pathogen, Metarhizium guizhouense. Hence, horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The accessory chromosome that was transferred contains genes that may be involved in its preferential horizontal transfer or support its establishment. These genes encode putative histones and histone-modifying enzymes, as well as putative virulence factors. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.


Assuntos
Formigas , Animais , Filogenia , Histonas , Insetos , Cromossomos
2.
Curr Biol ; 34(4): 902-909.e6, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38307022

RESUMO

In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.


Assuntos
Formigas , Micoses , Animais , Formigas/fisiologia , Ingestão de Alimentos , Aminoácidos , Carboidratos
3.
BMC Ecol Evol ; 23(1): 37, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550612

RESUMO

BACKGROUND: Fighting disease while fighting rivals exposes males to constraints and trade-offs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfere with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony's worker force. RESULTS: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. CONCLUSIONS: Males of the ant C. obscurior have a well-developed immune system that raises a strong immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without compromising their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus reveals a novel social immunity mechanism how social insect workers protect the colony against disease risk.


Assuntos
Formigas , Comportamento Sexual Animal , Animais , Masculino , Comportamento Sexual Animal/fisiologia , Longevidade , Reprodução/fisiologia , Gravitação
4.
Nat Commun ; 14(1): 3232, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270641

RESUMO

Cooperative disease defense emerges as group-level collective behavior, yet how group members make the underlying individual decisions is poorly understood. Using garden ants and fungal pathogens as an experimental model, we derive the rules governing individual ant grooming choices and show how they produce colony-level hygiene. Time-resolved behavioral analysis, pathogen quantification, and probabilistic modeling reveal that ants increase grooming and preferentially target highly-infectious individuals when perceiving high pathogen load, but transiently suppress grooming after having been groomed by nestmates. Ants thus react to both, the infectivity of others and the social feedback they receive on their own contagiousness. While inferred solely from momentary ant decisions, these behavioral rules quantitatively predict hour-long experimental dynamics, and synergistically combine into efficient colony-wide pathogen removal. Our analyses show that noisy individual decisions based on only local, incomplete, yet dynamically-updated information on pathogen threat and social feedback can lead to potent collective disease defense.


Assuntos
Formigas , Metarhizium , Humanos , Animais , Comportamento Social , Formigas/microbiologia , Retroalimentação , Higiene , Comportamento Animal
5.
Front Microbiol ; 14: 1119002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007485

RESUMO

Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.

6.
Nat Ecol Evol ; 7(3): 450-460, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732670

RESUMO

Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers' detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts.


Assuntos
Formigas , Metarhizium , Humanos , Animais , Metarhizium/fisiologia , Insetos , Asseio Animal
8.
Ecol Lett ; 25(1): 89-100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34725912

RESUMO

Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing 'superorganisms'--incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.


Assuntos
Formigas , Animais , Feminino , Humanos , Reprodução , Estações do Ano , Comportamento Social
9.
Ecol Lett ; 23(3): 565-574, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950595

RESUMO

Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants - their social immunity - influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.


Assuntos
Formigas , Metarhizium , Animais , Asseio Animal , Interações Hospedeiro-Patógeno , Comportamento Social , Virulência
10.
Curr Opin Insect Sci ; 33: 63-68, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358197

RESUMO

Ant invasions are often harmful to native species communities. Their pathogens and host disease defense mechanisms may be one component of their devastating success. First, they can introduce harmful diseases to their competitors in the introduced range, to which they themselves are tolerant. Second, their supercolonial social structure of huge multi-queen nest networks means that they will harbor a broad pathogen spectrum and high pathogen load while remaining resilient, unlike the smaller, territorial colonies of the native species. Thus, it is likely that invasive ants act as a disease reservoir, promoting their competitive advantage and invasive success.


Assuntos
Formigas/microbiologia , Espécies Introduzidas , Animais , Formigas/imunologia , Bactérias , Coevolução Biológica , Ecossistema , Feminino , Fungos , Masculino , Comportamento Social
11.
Curr Biol ; 29(11): R458-R463, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163158

RESUMO

When animals become sick, infected cells and an armada of activated immune cells attempt to eliminate the pathogen from the body. Once infectious particles have breached the body's physical barriers of the skin or gut lining, an initially local response quickly escalates into a systemic response, attracting mobile immune cells to the site of infection. These cells complement the initial, unspecific defense with a more specialized, targeted response. This can also provide long-term immune memory and protection against future infection. The cell-autonomous defenses of the infected cells are thus aided by the actions of recruited immune cells. These specialized cells are the most mobile cells in the body, constantly patrolling through the otherwise static tissue to detect incoming pathogens. Such constant immune surveillance means infections are noticed immediately and can be rapidly cleared from the body. Some immune cells also remove infected cells that have succumbed to infection. All this prevents pathogen replication and spread to healthy tissues. Although this may involve the sacrifice of some somatic tissue, this is typically replaced quickly. Particular care is, however, given to the reproductive organs, which should always remain disease free (immune privilege).


Assuntos
Imunidade Inata/fisiologia , Insetos/imunologia , Animais
12.
Ecol Evol ; 8(22): 11031-11070, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519425

RESUMO

Social insects have evolved enormous capacities to collectively build nests and defend their colonies against both predators and pathogens. The latter is achieved by a combination of individual immune responses and sophisticated collective behavioral and organizational disease defenses, that is, social immunity. We investigated how the presence or absence of these social defense lines affects individual-level immunity in ant queens after bacterial infection. To this end, we injected queens of the ant Linepithema humile with a mix of gram+ and gram- bacteria or a control solution, reared them either with workers or alone and analyzed their gene expression patterns at 2, 4, 8, and 12 hr post-injection, using RNA-seq. This allowed us to test for the effect of bacterial infection, social context, as well as the interaction between the two over the course of infection and raising of an immune response. We found that social isolation per se affected queen gene expression for metabolism genes, but not for immune genes. When infected, queens reared with and without workers up-regulated similar numbers of innate immune genes revealing activation of Toll and Imd signaling pathways and melanization. Interestingly, however, they mostly regulated different genes along the pathways and showed a different pattern of overall gene up-regulation or down-regulation. Hence, we can conclude that the absence of workers does not compromise the onset of an individual immune response by the queens, but that the social environment impacts the route of the individual innate immune responses.

13.
BMC Biol ; 16(1): 128, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376833

RESUMO

Reinvestigation of the raw data revealed an unfortunate error in Ugelvig et al. 2008 [1].

14.
Science ; 362(6417): 941-945, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30467168

RESUMO

Animal social networks are shaped by multiple selection pressures, including the need to ensure efficient communication and functioning while simultaneously limiting disease transmission. Social animals could potentially further reduce epidemic risk by altering their social networks in the presence of pathogens, yet there is currently no evidence for such pathogen-triggered responses. We tested this hypothesis experimentally in the ant Lasius niger using a combination of automated tracking, controlled pathogen exposure, transmission quantification, and temporally explicit simulations. Pathogen exposure induced behavioral changes in both exposed ants and their nestmates, which helped contain the disease by reinforcing key transmission-inhibitory properties of the colony's contact network. This suggests that social network plasticity in response to pathogens is an effective strategy for mitigating the effects of disease in social groups.


Assuntos
Formigas/microbiologia , Interações Hospedeiro-Patógeno , Metarhizium/patogenicidade , Comportamento Social , Rede Social , Animais
15.
Curr Biol ; 28(19): R1139-R1140, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30300596

RESUMO

Many animals use antimicrobials to prevent or cure disease [1,2]. For example, some animals will ingest plants with medicinal properties, both prophylactically to prevent infection and therapeutically to self-medicate when sick. Antimicrobial substances are also used as topical disinfectants, to prevent infection, protect offspring and to sanitise their surroundings [1,2]. Social insects (ants, bees, wasps and termites) build nests in environments with a high abundance and diversity of pathogenic microorganisms - such as soil and rotting wood - and colonies are often densely crowded, creating conditions that favour disease outbreaks. Consequently, social insects have evolved collective disease defences to protect their colonies from epidemics. These traits can be seen as functionally analogous to the immune system of individual organisms [3,4]. This 'social immunity' utilises antimicrobials to prevent and eradicate infections, and to keep the brood and nest clean. However, these antimicrobial compounds can be harmful to the insects themselves, and it is unknown how colonies prevent collateral damage when using them. Here, we demonstrate that antimicrobial acids, produced by workers to disinfect the colony, are harmful to the delicate pupal brood stage, but that the pupae are protected from the acids by the presence of a silk cocoon.


Assuntos
Anti-Infecciosos/efeitos adversos , Formigas/imunologia , Pupa/metabolismo , Animais , Anti-Infecciosos/metabolismo , Formigas/metabolismo , Comportamento Animal , Insetos , Pupa/fisiologia , Comportamento Social
16.
FASEB J ; : fj201800443, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29939785

RESUMO

Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.-Liutkeviciute, Z., Gil-Mansilla, E., Eder, T., Casillas-Pérez, B., Di Giglio, M. G., Muratspahic, E., Grebien, F., Rattei, T., Muttenthaler, M., Cremer, S., Gruber, C. W. Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity.

17.
Proc Natl Acad Sci U S A ; 115(11): 2782-2787, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29463746

RESUMO

Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host's vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Animais , Beauveria/fisiologia , Comportamento Animal , Asseio Animal , Interações Hospedeiro-Patógeno , Metarhizium/fisiologia , Modelos Biológicos
18.
Elife ; 72018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29310753

RESUMO

In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.


Assuntos
Antibiose , Formigas/microbiologia , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Pupa/microbiologia , Animais , Comportamento Animal , Comportamento Social
19.
Annu Rev Entomol ; 63: 105-123, 2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28945976

RESUMO

Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.


Assuntos
Himenópteros/imunologia , Comportamento Social , Animais , Evolução Biológica , Interações Hospedeiro-Patógeno , Himenópteros/genética , Isópteros/genética , Isópteros/imunologia
20.
BMC Evol Biol ; 17(1): 219, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29025392

RESUMO

BACKGROUND: Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. RESULTS: Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. CONCLUSIONS: We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Metarhizium/fisiologia , Comportamento Social , Animais , Comportamento Animal , Comportamento de Nidação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...