Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(3): 765-775, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36653519

RESUMO

PURPOSE: Preclinical aerosol studies using animals are essential for evaluating toxic or therapeutic effects on human respiratory tract. Macaques are relevant animal models for respiratory studies, but they are sensitive, expensive and difficult-to-access. METHODS: In the context of preliminary studies before animal experiments, we set up an alternative in vitro anatomical model of macaque airways to reduce, refine and replace (3Rs) the animals. We printed an in vitro anatomical cast until the third bronchial division from X-ray computed tomography data of a healthy cynomolgus macaque. This in vitro model was then connected to a respiratory pump to mimic macaque's breathing. We assessed the relevance of this in vitro model, by comparing aerosol deposition patterns obtained with the anatomical model and in three macaques using planar gamma camera imaging. DTPA-99mTechnetium aerosols were produced using three jet nebulizers, generating three different particle sizes: 13.1, 3.2 and 0.93 µm in terms of the mass median aerodynamic diameter (MMAD). RESULTS: The data showed no statistical differences between the animal and anatomical in vitro models in terms of total aerosol deposited in the airways. However, the distribution of the deposition in the airways showed a higher deposited fraction in the upper respiratory tract in the animals than the in vitro model for all particle sizes. CONCLUSIONS: The anatomical printed model appears to be a relevant in vitro tool to predict total aerosol deposition in macaque airways.


Assuntos
Pulmão , Nebulizadores e Vaporizadores , Animais , Humanos , Administração por Inalação , Aerossóis , Macaca , Impressão Tridimensional , Tamanho da Partícula
2.
Mol Immunol ; 135: 147-164, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895579

RESUMO

Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Animais , COVID-19/patologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Haplorrinos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...