Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(1): e1011023, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696456

RESUMO

Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Proteínas do Sistema Complemento , Complexo de Ataque à Membrana do Sistema Complemento
2.
Adv Exp Med Biol ; 1386: 325-345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258078

RESUMO

Bloodstream infections (BSI) with Pseudomonas aeruginosa account for 8.5% of all BSIs, their mortality rate, at about 40%, is the highest among causative agents. For this reason and due to its intrinsic and acquired resistance to antibiotics, P. aeruginosa represents a threat to public health systems. From the primary site of infection, often the urinary and respiratory tracts, P. aeruginosa uses its arsenal of virulence factors to cross both epithelial and endothelial barriers, ultimately reaching the bloodstream. In this chapter, we review the main steps involved in invasion and migration of P. aeruginosa into blood vessels, and the molecular mechanisms governing bacterial survival in blood. We also review the lifestyle of P. aeruginosa "on" and "in" host cells. In the context of genomic and phenotypic diversity of laboratory strains and clinical isolates, we underline the need for more standardized and robust methods applied to host-pathogen interaction studies, using several representative strains from distinct phylogenetic groups before drawing general conclusions. Finally, our literature survey reveals a need for further studies to complete our comprehension of the complex interplay between P. aeruginosa and the immune system in the blood, specifically in relation to the complement system cascade(s) and the Membrane Attack Complex (MAC), which play crucial roles in counteracting P. aeruginosa BSI.


Assuntos
Bacteriemia , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/microbiologia , Bacteriemia/microbiologia , Complexo de Ataque à Membrana do Sistema Complemento , Filogenia , Fatores de Virulência/genética , Antibacterianos/uso terapêutico
3.
PLoS Pathog ; 16(12): e1008893, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326490

RESUMO

Bacterial bloodstream infections (BSI) are a major health concern and can cause up to 40% mortality. Pseudomonas aeruginosa BSI is often of nosocomial origin and is associated with a particularly poor prognosis. The mechanism of bacterial persistence in blood is still largely unknown. Here, we analyzed the behavior of a cohort of clinical and laboratory Pseudomonas aeruginosa strains in human blood. In this specific environment, complement was the main defensive mechanism, acting either by direct bacterial lysis or by opsonophagocytosis, which required recognition by immune cells. We found highly variable survival rates for different strains in blood, whatever their origin, serotype, or the nature of their secreted toxins (ExoS, ExoU or ExlA) and despite their detection by immune cells. We identified and characterized a complement-tolerant subpopulation of bacterial cells that we named "evaders". Evaders shared some features with bacterial persisters, which tolerate antibiotic treatment. Notably, in bi-phasic killing curves, the evaders represented 0.1-0.001% of the initial bacterial load and displayed transient tolerance. However, the evaders are not dormant and require active metabolism to persist in blood. We detected the evaders for five other major human pathogens: Acinetobacter baumannii, Burkholderia multivorans, enteroaggregative Escherichia coli, Klebsiella pneumoniae, and Yersinia enterocolitica. Thus, the evaders could allow the pathogen to persist within the bloodstream, and may be the cause of fatal bacteremia or dissemination, in particular in the absence of effective antibiotic treatments.


Assuntos
Infecções Bacterianas/sangue , Infecções Bacterianas/imunologia , Ativação do Complemento/imunologia , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/patogenicidade , Bacteriemia/sangue , Bacteriemia/imunologia , Bacteriemia/microbiologia , Bactérias , Burkholderia/crescimento & desenvolvimento , Burkholderia/patogenicidade , Proteínas do Sistema Complemento/imunologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/patogenicidade
5.
Nat Microbiol ; 3(3): 378-386, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29403015

RESUMO

Recent studies highlight that bacterial pathogens can reprogram target cells by influencing epigenetic factors. The type III secretion system (T3SS) is a bacterial nanomachine that resembles a syringe on the bacterial surface. The T3SS 'needle' delivers translocon proteins into eukaryotic cell membranes, subsequently allowing injection of bacterial effectors into the cytosol. Here we show that Pseudomonas aeruginosa induces early T3SS-dependent dephosphorylation and deacetylation of histone H3 in eukaryotic cells. This is not triggered by any of the P. aeruginosa T3SS effectors, but results from the insertion of the PopB-PopD translocon into the membrane. This suggests that the P. aeruginosa translocon is a genuine T3SS effector acting as a pore-forming toxin. We visualized the translocon plugged into the host cell membrane after the bacterium has left the site of contact, and demonstrate that subsequent ion exchange through this pore is responsible for histone H3 modifications and host cell subversion.


Assuntos
Membrana Celular/metabolismo , Epigênese Genética , Interações Hospedeiro-Patógeno , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/genética , Células A549 , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Células HeLa , Código das Histonas , Histonas/metabolismo , Humanos , Larva/microbiologia , Mariposas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III/metabolismo
6.
Sci Rep ; 7(1): 2120, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522850

RESUMO

Exolysin (ExlA) is a recently-identified pore-forming toxin secreted by a subset of Pseudomonas aeruginosa strains identified worldwide and devoid of Type III secretion system (T3SS), a major virulence factor. Here, we characterized at the ultrastructural level the lesions caused by an ExlA-secreting strain, CLJ1, in mouse infected lungs. CLJ1 induced necrotic lesions in pneumocytes and endothelial cells, resulting in alveolo-vascular barrier breakdown. Ectopic expression of ExlA in an exlA-negative strain induced similar tissue injuries. In addition, ExlA conferred on bacteria the capacity to proliferate in lungs and to disseminate in secondary organs, similar to bacteria possessing a functional T3SS. CLJ1 did not promote a strong neutrophil infiltration in the alveoli, owing to the weak pro-inflammatory cytokine reaction engendered by the strain. However, CLJ1 was rapidly eliminated from the blood in a bacteremia model, suggesting that it can be promptly phagocytosed by immune cells. Together, our study ascribes to ExlA-secreting bacteria the capacity to proliferate in the lung and to damage pulmonary tissues, thereby promoting metastatic infections, in absence of substantial immune response exacerbation.


Assuntos
Células Epiteliais Alveolares/microbiologia , Bacteriemia/microbiologia , Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose
7.
Mol Ther ; 21(5): 1076-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23531551

RESUMO

The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the "killed but metabolically active" (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Imunoterapia , Pseudomonas aeruginosa/imunologia , Animais , Sistemas de Secreção Bacterianos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/toxicidade , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Furocumarinas/farmacologia , Humanos , Imunidade Celular , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Camundongos , Mutação , Neoplasias/imunologia , Neoplasias/prevenção & controle , Neoplasias/terapia , Fármacos Fotossensibilizantes/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 7(1): e30488, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22299042

RESUMO

Pseudomonas aeruginosa type III secretion apparatus exports and translocates four exotoxins into the cytoplasm of the host cell. The translocation requires two hydrophobic bacterial proteins, PopB and PopD, that are found associated with host cell membranes following infection. In this work we examined the influence of host cell elements on exotoxin translocation efficiency. We developed a quantitative flow cytometry based assay of translocation that used protein fusions between either ExoS or ExoY and the ß-lactamase reporter enzyme. In parallel, association of translocon proteins with host plasma membranes was evaluated by immunodetection of PopB/D following sucrose gradient fractionation of membranes. A pro-myelocytic cell line (HL-60) and a pro-monocytic cell line (U937) were found resistant to toxin injection even though PopB/D associated with host cell plasma membranes. Differentiation of these cells to either macrophage- or neutrophil-like cell lines resulted in injection-sensitive phenotype without significantly changing the level of membrane-inserted translocon proteins. As previous in vitro studies have indicated that the lysis of liposomes by PopB and PopD requires both cholesterol and phosphatidyl-serine, we first examined the role of cholesterol in translocation efficiency. Treatment of sensitive HL-60 cells with methyl-ß-cyclodextrine, a cholesterol-depleting agent, resulted in a diminished injection of ExoS-Bla. Moreover, the PopB translocator was found in the membrane fraction, obtained from sucrose-gradient purifications, containing the lipid-raft marker flotillin. Examination of components of signalling pathways influencing the toxin injection was further assayed through a pharmacological approach. A systematic detection of translocon proteins within host membranes showed that, in addition to membrane composition, some general signalling pathways involved in actin polymerization may be critical for the formation of a functional pore. In conclusion, we provide new insights in regulation of translocation process and suggest possible cross-talks between eukaryotic cell and the pathogen at the level of exotoxin translocation.


Assuntos
Translocação Bacteriana , Exotoxinas/administração & dosagem , Exotoxinas/genética , Interações Hospedeiro-Patógeno/genética , Pseudomonas aeruginosa/genética , ADP Ribose Transferases/administração & dosagem , ADP Ribose Transferases/genética , ADP Ribose Transferases/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Translocação Bacteriana/genética , Translocação Bacteriana/fisiologia , Membrana Celular/metabolismo , Exotoxinas/metabolismo , Exotoxinas/farmacologia , Genes Reporter , Células HL-60 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata/genética , Injeções , Transporte Proteico , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Células U937 , beta-Lactamases/genética , beta-Lactamases/metabolismo
9.
Mol Immunol ; 45(13): 3509-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18585783

RESUMO

Increasing evidence underlines the involvement of complement component C3 in the establishment of acquired immunity which appears to play a complex role and to act at different levels. As antigen proteolysis by antigen presenting cells is a key event in the control of antigen presentation efficiency, and consequently in the quality of the immune response, we investigated whether C3 could modulate this step. Our results demonstrate for the first time that C3 can interfere with antigen proteolysis: (i) proteolysis of tetanus toxin (TT) by the lysosomal fraction from a human monocytic cell line (U937) is impaired in the presence of C3, (ii) this effect is C3-specific and involves the C3c fragment of the protein, (iii) C3c is effective even after disulfide disruption, but none of its three constitutive peptides is individually accountable for this inhibitory effect and (iv) the target-protease(s) exhibit(s) a serine-protease activity. The physiological relevance of our results is demonstrated by experiments showing a subcellular colocalisation of TT and C3 after their uptake by U937 and the reduction of TT proteolysis once internalised together with C3. These results highlight a novel role for C3 that broadens its capacity to modulate acquired immune response.


Assuntos
Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Complemento C3/fisiologia , Regulação para Baixo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/fisiologia , Complemento C3/imunologia , Complemento C3/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteases/imunologia , Inibidores de Proteases/farmacologia , Especificidade por Substrato , Toxina Tetânica/imunologia , Toxina Tetânica/metabolismo , Células U937
10.
Mol Immunol ; 44(11): 2893-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17320958

RESUMO

In addition to its well-established role in innate immunity, the complement component C3 is of critical importance in modulating the humoral response. In this study, we examined the effect of C3b linkage to tetanus toxin (TeNT) in the production of antigenic peptides inside human APC. We purified HLA-DR associated peptides isolated either from TeNT or TeNT-C3b pulsed cells. This study revealed that TeNT-C3b derived antigenic peptides are different and more numerous than TeNT derived peptides. This increased production of antigenic peptides correlated with a C3b-induced TeNT modification of proteolysis. These findings argue in favour of a new role for C3b in the modulation of T cell epitope during antigen processing and presentation.


Assuntos
Apresentação de Antígeno , Complemento C3b/imunologia , Epitopos de Linfócito T/imunologia , Animais , Linhagem Celular , Antígenos HLA-DR/imunologia , Humanos , Imunidade Inata , Ativação Linfocitária , Toxina Tetânica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...