Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38712209

RESUMO

Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the dynamic social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue flying females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the dense swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited attraction to visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that mosquitoes modulate their flight responses to nearby conspecifics in a similar manner to tethered animals, allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues allows them to simultaneously track females while avoiding collisions.

2.
Curr Biol ; 34(6): 1194-1205.e7, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38367617

RESUMO

To detect and escape looming threats, night-flying insects must rely on other senses than vision alone. Nocturnal mosquitoes can evade looming objects in the dark, but how they achieve this is still unknown. Here, we show how night-active female malaria mosquitoes escape from rapidly looming objects that simulate defensive actions of blood-hosts. First, we quantified the escape performance of flying mosquitoes from an event-triggered mechanical swatter, showing that mosquitoes use swatter-induced airflow to increase their escape success. Secondly, we used high-speed videography and deep-learning-based tracking to analyze escape flights in detail, showing that mosquitoes use banked turns to evade the threat. By combining escape kinematics data with numerical simulations of attacker-induced airflow and a mechanistic movement model, we unraveled how mosquitoes control these banked evasive maneuvers: they actively steer away from the danger, and then passively travel with the bow wave produced by the attacker. Our results demonstrate that night-flying mosquitoes can detect looming objects when visual cues are minimal, suggesting that they use attacker-induced airflow both to detect the danger and as a fluid medium to move with away from the threat. This shows that escape strategies of flying insects are more complex than previous visually induced escape flight studies suggest. As most insects are of similar or smaller sizes than mosquitoes, comparable escape strategies are expected among millions of flying insect species. The here-observed escape maneuvers are distinct from those of mosquitoes escaping from odor-baited traps, thus providing new insights for the development of novel trapping techniques for integrative vector management.


Assuntos
Culicidae , Animais , Feminino , Mosquitos Vetores , Odorantes , Visão Ocular , Insetos
3.
Trends Ecol Evol ; 39(2): 128-130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142163

RESUMO

Modern sensor technologies increasingly enrich studies in wildlife behavior and ecology. However, constraints on weight, connectivity, energy and memory availability limit their implementation. With the advent of edge computing, there is increasing potential to mitigate these constraints, and drive major advancements in wildlife studies.


Assuntos
Animais Selvagens , Computação em Nuvem , Animais , Ecologia
4.
Curr Biol ; 32(6): 1232-1246.e5, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134328

RESUMO

Flying insects have evolved the ability to evade looming objects, such as predators and swatting hands. This is particularly relevant for blood-feeding insects, such as mosquitoes that routinely need to evade the defensive actions of their blood hosts. To minimize the chance of being swatted, a mosquito can use two distinct strategies-continuously exhibiting an unpredictable flight path or maximizing its escape maneuverability. We studied how baseline flight unpredictability and escape maneuverability affect the escape performance of day-active and night-active mosquitoes (Aedes aegypti and Anopheles coluzzii, respectively). We used a multi-camera high-speed videography system to track how freely flying mosquitoes respond to an event-triggered rapidly approaching mechanical swatter, in four different light conditions ranging from pitch darkness to overcast daylight. Results show that both species exhibit enhanced escape performance in their natural blood-feeding light condition (daylight for Aedes and dark for Anopheles). To achieve this, they show strikingly different behaviors. The enhanced escape performance of Anopheles at night is explained by their increased baseline unpredictable erratic flight behavior, whereas the increased escape performance of Aedes in overcast daylight is due to their enhanced escape maneuvers. This shows that both day and night-active mosquitoes modify their flight behavior in response to light intensity such that their escape performance is maximum in their natural blood-feeding light conditions, when these defensive actions by their blood hosts occur most. Because Aedes and Anopheles mosquitoes are major vectors of several deadly human diseases, this knowledge can be used to optimize vector control methods for these specific species.


Assuntos
Aedes , Anopheles , Aedes/fisiologia , Animais , Anopheles/fisiologia , Escuridão , Humanos , Luz , Mosquitos Vetores/fisiologia
5.
iScience ; 24(5): 102407, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997689

RESUMO

When approaching a landing surface, many flying animals use visual feedback to control their landing. Here, we studied how foraging bumblebees (Bombus terrestris) use radial optic expansion cues to control in-flight decelerations during landing. By analyzing the flight dynamics of 4,672 landing maneuvers, we showed that landing bumblebees exhibit a series of deceleration bouts, unlike landing honeybees that continuously decelerate. During each bout, the bumblebee keeps its relative rate of optical expansion constant, and from one bout to the next, the bumblebee tends to shift to a higher, constant relative rate of expansion. This modular landing strategy is relatively fast compared to the strategy described for honeybees and results in approach dynamics that is strikingly similar to that of pigeons and hummingbirds. The here discovered modular landing strategy of bumblebees helps explaining why these important pollinators in nature and horticulture can forage effectively in challenging conditions; moreover, it has potential for bio-inspired landing strategies in flying robots.

6.
Malar J ; 19(1): 357, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028362

RESUMO

BACKGROUND: When seeking a human for a blood meal, mosquitoes use several cues to detect and find their hosts. From this knowledge, counter-flow odour-baited traps have been developed that use a combination of CO2, human-mimicking odour, visual cues and circulating airflow to attract and capture mosquitoes. Initially developed for monitoring, these traps are now also being considered as promising vector control tools. The traps are attractive to host-seeking mosquitoes, but their capture efficiency is low. It has been hypothesized that the lack of short-range host cues, such as heat and increased local humidity, often prevent mosquitoes from getting close enough to get caught; this lack might even trigger avoidance manoeuvres near the capture region. METHODS: This study investigated how close-range host cues affect the flight behaviour of Anopheles female malaria mosquitoes around odour-baited traps, and how this affects trap capture performance. For this, a novel counter-flow odour-baited trap was developed, the M-Tego. In addition to the usual CO2 and odour-blend, this trap can provide the short-range host cues, heat and humidity. Systematically adding or removing these two cues tested how this affected the trap capture percentages and flight behaviour. First, capture percentages of the M-Tego with and without short-range host cues to the BG-Suna trap were compared, in both laboratory and semi-field testing. Then, machine-vision techniques were used to track the three-dimensional flight movements of mosquitoes around the M-Tego. RESULTS: With heat and humidity present, the M-Tego captured significantly more mosquitoes as capture percentages almost doubled. Comparing the flight behaviour around the M-Tego with variable close-range host cues showed that when these cues were present, flying mosquitoes were more attracted to the trap and spent more time there. In addition, the M-Tego was found to have a better capture mechanism than the BG-Suna, most likely because it does not elicit previously observed upward avoiding manoeuvres. CONCLUSIONS: Results suggest that adding heat and humidity to an odour-baited trap lures more mosquitoes close to the trap and retains them there longer, resulting in higher capture performance. These findings support the development of control tools for fighting mosquito-borne diseases such as malaria.


Assuntos
Anopheles , Temperatura Alta , Umidade , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Odorantes/análise , Animais , Feminino
7.
R Soc Open Sci ; 5(8): 180246, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225014

RESUMO

Host-seeking mosquitoes rely on a range of sensory cues to find and approach blood hosts, as well as to avoid host detection. By using odour blends and visual cues that attract anthropophilic mosquitoes, odour-baited traps have been developed to monitor and control human pathogen-transmitting vectors. Although long-range attraction of such traps has already been studied thoroughly, close-range response of mosquitoes to these traps has been largely ignored. Here, we studied the flight behaviour of female malaria mosquitoes (Anopheles coluzzii) in the immediate vicinity of a commercially available odour-baited trap, positioned in a hanging and standing orientation. By analysing more than 2500 three-dimensional flight tracks, we elucidated how mosquitoes reacted to the trap, and how this led to capture. The measured flight dynamics revealed two distinct stereotypical behaviours: (i) mosquitoes that approached a trap tended to simultaneously fly downward towards the ground; (ii) mosquitoes that came close to a trap changed their flight direction by rapidly accelerating upward. The combination of these behaviours led to strikingly different flight patterns and capture dynamics, resulting in contrasting short-range attractiveness and capture mechanism of the oppositely oriented traps. These new insights may help in improving odour-baited traps, and consequently their contribution in global vector control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...