Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ann Clin Biochem ; 59(2): 144-148, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937410

RESUMO

Multiple myeloma is a haematological cancer caused by malignant plasma cells in the bone marrow that can result in organ dysfunction and death. Recent novel treatments have contributed to improved survival rates, including monoclonal antibody therapies that target the CD38 protein on the surface of plasma cells. Anti-CD38 therapies are IgG kappa monoclonal antibodies that are given in doses high enough for the drug to be visible on serum protein electrophoresis as a small paraprotein. We present a case where isatuximab, the most recent anti-CD38 monoclonal antibody to be approved for treatment of myeloma, obscured the patient's paraprotein on gel immunofixation, so that complete remission could not be demonstrated. This was resolved using the isatuximab Hydrashift assay. The interference on gel immunofixation was unexpected because isatuximab migrated in a position distinct from the patient's paraprotein on capillary zone electrophoresis. We demonstrate the surprising finding that isatuximab migrates in a different position on gel electrophoresis compared to capillary zone electrophoresis. It is vital that laboratories are aware of the possible interference on electrophoresis from anti-CD38 monoclonal antibody therapies, and are able to recognise these drugs on protein electrophoresis. The difference in isatuximab's electrophoretic mobility on capillary and gel protein electrophoresis makes this particularly challenging. Laboratories should have a strategy for alternative analyses in the event that the drugs interfere with assessment of the patient's paraprotein.


Assuntos
Mieloma Múltiplo , Anticorpos Monoclonais Humanizados/uso terapêutico , Eletroforese , Humanos , Paraproteínas
2.
Bone Marrow Res ; 2018: 5742954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29955397

RESUMO

S100A8 and S100A9 are both members of the S100 family and have been shown to play roles in myeloid differentiation, autophagy, apoptosis, and chemotherapy resistance. In this study we demonstrate that the BET-bromodomain inhibitor JQ1 causes rapid suppression of S100A8 and S100A9 mRNA and protein in a reversible manner. In addition, we show that JQ1 synergises with daunorubicin in causing AML cell death. Daunorubicin alone causes a dose- and time-dependent increase in S100A8 and S100A9 protein levels in AML cell lines which is overcome by cotreatment with JQ1. This suggests that JQ1 synergises with daunorubicin in causing apoptosis via suppression of S100A8 and S100A9 levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...