Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 198(5): 793-8, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22927468

RESUMO

The Chk2-mediated deoxyribonucleic acid (DNA) damage checkpoint pathway is important for mitochondrial DNA (mtDNA) maintenance. We show in this paper that mtDNA itself affects cell cycle progression. Saccharomyces cerevisiae rho(0) cells, which lack mtDNA, were defective in G1- to S-phase progression. Deletion of subunit Va of cytochrome c oxidase, inhibition of F(1)F(0) adenosine triphosphatase, or replacement of all mtDNA-encoded genes with noncoding DNA did not affect G1- to S-phase progression. Thus, the cell cycle progression defect in rho(0) cells is caused by loss of DNA within mitochondria and not loss of respiratory activity or mtDNA-encoded genes. Rad53p, the yeast Chk2 homologue, was required for inhibition of G1- to S-phase progression in rho(0) cells. Pif1p, a DNA helicase and Rad53p target, underwent Rad53p-dependent phosphorylation in rho(0) cells. Thus, loss of mtDNA activated an established checkpoint kinase that inhibited G1- to S-phase progression. These findings support the existence of a Rad53p-regulated checkpoint that regulates G1- to S-phase progression in response to loss of mtDNA.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Mitocondrial/genética , Fase G1/genética , Genes cdc , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Quinase do Ponto de Checagem 2 , Dano ao DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Bioessays ; 32(12): 1040-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20886527

RESUMO

Movement and positional control of mitochondria and other organelles are coordinated with cell cycle progression in the budding yeast, Saccharomyces cerevisiae. Recent studies have revealed a checkpoint that inhibits cytokinesis when there are severe defects in mitochondrial inheritance. An established checkpoint signaling pathway, the mitotic exit network (MEN), participates in this process. Here, we describe mitochondrial motility during inheritance in budding yeast, emerging evidence for mitochondrial quality control during inheritance, and organelle inheritance checkpoints for mitochondria and other organelles.


Assuntos
Citocinese , Mitocôndrias/fisiologia , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miosinas/metabolismo , Organelas/genética , Organelas/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Curr Biol ; 19(20): 1730-5, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19818621

RESUMO

Mitochondrial inheritance, the transfer of mitochondria from mother to daughter cell during cell division, is essential for daughter cell viability. The mitochore, a mitochondrial protein complex containing Mdm10p, Mdm12p, and Mmm1p, is required for mitochondrial motility leading to inheritance in budding yeast. We observe a defect in cytokinesis in mitochore mutants and another mutant (mmr1Delta gem1Delta) with impaired mitochondrial inheritance. This defect is not observed in yeast that have no mitochondrial DNA or defects in mitochondrial protein import or assembly of beta-barrel proteins in the mitochondrial outer membrane. Deletion of MDM10 inhibits contractile-ring closure, but does not inhibit contractile-ring assembly, localization of a chromosomal passenger protein to the spindle during early anaphase, spindle alignment, nucleolar segregation, or nuclear migration during anaphase. Release of the mitotic exit network (MEN) component, Cdc14p, from the nucleolus during anaphase is delayed in mdm10Delta cells. Finally, hyperactivation of the MEN by deletion of BUB2 restores defects in cytokinesis in mdm10Delta and mmr1Delta gem1Delta cells and reduces the fidelity of mitochondrial segregation between mother and daughter cells in wild-type and mdm10Delta cells. Our studies identify a novel MEN-linked regulatory system that inhibits cytokinesis in response to defects in mitochondrial inheritance in budding yeast.


Assuntos
Citocinese/fisiologia , Mitocôndrias/fisiologia , Mitose/fisiologia , Saccharomyces cerevisiae/citologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Deleção de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
4.
PLoS One ; 3(6): e2478, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18575582

RESUMO

BACKGROUND: The transcription factor B-Myb is present in all proliferating cells, and in mice engineered to remove this gene, embryos die in utero just after implantation due to inner cell mass defects. This lethal phenotype has generally been attributed to a proliferation defect in the cell cycle phase of G1. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we show that the major cell cycle defect in murine embryonic stem (mES) cells occurs in G2/M. Specifically, knockdown of B-Myb by short-hairpin RNAs results in delayed transit through G2/M, severe mitotic spindle and centrosome defects, and in polyploidy. Moreover, many euploid mES cells that are transiently deficient in B-Myb become aneuploid and can no longer be considered viable. Knockdown of B-Myb in mES cells also decreases Oct4 RNA and protein abundance, while over-expression of B-MYB modestly up-regulates pou5f1 gene expression. The coordinated changes in B-Myb and Oct4 expression are due, at least partly, to the ability of B-Myb to directly modulate pou5f1 gene promoter activity in vitro. Ultimately, the loss of B-Myb and associated loss of Oct4 lead to an increase in early markers of differentiation prior to the activation of caspase-mediated programmed cell death. CONCLUSIONS/SIGNIFICANCE: Appropriate B-Myb expression is critical to the maintenance of chromosomally stable and pluripotent ES cells, but its absence promotes chromosomal instability that results in either aneuploidy or differentiation-associated cell death.


Assuntos
Ciclo Celular/fisiologia , Instabilidade Cromossômica , Células-Tronco Embrionárias/citologia , Genes myb , Proteínas Proto-Oncogênicas c-myb/fisiologia , Aneuploidia , Animais , Apoptose , Diferenciação Celular , Camundongos , Poliploidia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/genética
5.
Methods Mol Med ; 108: 417-35, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16028698

RESUMO

Self-renewing embryonic stem (ES) cells have been established from early mouse embryos as permanent cell lines. By cultivation in vitro as three-dimensional aggregates called embryoid bodies (EBs), ES cells can differentiate into derivatives of all three primary germ layers, including cardiomyocytes. ES cells thus represent a useful model system for studying cardiomyocyte developmental paradigms. This chapter describes techniques and protocols for the cultivation and maintenance of ES cell lines, and the differentiation of ES cell lines into all specialized cell types of the heart, including atrial-, ventricular-, sinus nodal- and Purkinje-like cardiomyocytes. We also include protocols for the isolation and evaluation (morphological, molecular, and functional) of in vitro-generated cardiomyocytes. We consider these latter techniques to be prerequisites for the successful use of this model system to study cardiomyocyte differentiation. Finally, our objective in writing this chapter is to provide sufficient detail and explanation so that any competent scientist who is new to the field will be able to successfully establish and employ this model system for the analysis of ES cell-derived cardiomyocytes.


Assuntos
Embrião de Mamíferos/citologia , Miocárdio/citologia , Células-Tronco/citologia , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Primers do DNA , Imunofluorescência , Camundongos
6.
Proteomics ; 4(12): 3813-32, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15378706

RESUMO

Embryonic stem (ES) cell lines represent a population of undifferentiated pluripotent cells capable of multilineage differentiation in vitro. Although very useful for studying developmental processes, human ES cell lines have also been suggested as a potential and unlimited source for cellular transplantation and the treatment of human disease. The proteomic basis of embryonic stemness (pluripotentiality and multilineage differentiation) and the transitions that lead to specific cell lineages however, remain to be defined. As an important first step in defining these processes, we have performed a proteomic analysis of undifferentiated mouse R1 ES cell lines using pH 3-10, 4-7 and 6-11 two-dimensional electrophoresis gels, matrix-assisted laser desorption/ionization and tandem mass spectrometry. Of the 700 gel spots analyzed, 241 distinct protein species were identified corresponding to 218 unique proteins, with a significant proportion functionally related to protein expression.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Embrião de Mamíferos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Bases de Dados como Assunto , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Espectrometria de Massas , Camundongos , Peptídeos/química , Proteômica , Ratos , Coloração pela Prata , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...