Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260287

RESUMO

Background: Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods: Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results: COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions: The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.

2.
Biosens Bioelectron ; 220: 114840, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402101

RESUMO

Heart disease is the leading cause of death worldwide and imposes a significant burden on healthcare systems globally. A major hurdle to the development of more effective therapeutics is the reliance on animal models that fail to faithfully recapitulate human pathophysiology. The predictivity of in vitro models that lack the complexity of in vivo tissue remain poor as well. To combat these issues, researchers are developing organ-on-a-chip models of the heart that leverage the use of human induced pluripotent stem cell-derived cardiomyocytes in combination with novel platforms engineered to better recapitulate tissue- and organ-level physiology. The integration of novel biosensors into these platforms is also a critical step in the development of these models, as they allow for increased throughput, real-time and longitudinal phenotypic assessment, and improved efficiency during preclinical disease modeling and drug screening studies. These platforms hold great promise for both improving our understanding of heart disease as well as for screening potential therapeutics based on clinically relevant endpoints with better predictivity of clinical outcomes. In this review, we describe state-of-the-art heart-on-a-chip platforms, the integration of novel biosensors into these models for real-time and continual monitoring of tissue-level physiology, as well as their use for modeling heart disease and drug screening applications. We also discuss future perspectives and further advances required to enable clinical trials-on-a-chip and next-generation precision medicine platforms.


Assuntos
Técnicas Biossensoriais , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Cardiopatias/diagnóstico , Cardiopatias/tratamento farmacológico , Miócitos Cardíacos
3.
Cell Stem Cell ; 29(5): 840-855.e7, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395180

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with 30% mortality from heart failure (HF) in the first year of life, but the cause of early HF remains unknown. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) from patients with HLHS showed that early HF is associated with increased apoptosis, mitochondrial respiration defects, and redox stress from abnormal mitochondrial permeability transition pore (mPTP) opening and failed antioxidant response. In contrast, iPSC-CM from patients without early HF showed normal respiration with elevated antioxidant response. Single-cell transcriptomics confirmed that early HF is associated with mitochondrial dysfunction accompanied with endoplasmic reticulum (ER) stress. These findings indicate that uncompensated oxidative stress underlies early HF in HLHS. Importantly, mitochondrial respiration defects, oxidative stress, and apoptosis were rescued by treatment with sildenafil to inhibit mPTP opening or TUDCA to suppress ER stress. Together these findings point to the potential use of patient iPSC-CM for modeling clinical heart failure and the development of therapeutics.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Antioxidantes/metabolismo , Cardiopatias Congênitas/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...