Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cancers (Basel) ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473422

RESUMO

Electroporation (EP) is a broadly accepted procedure that, through the application of electric pulses with appropriate amplitudes and waveforms, promotes the delivery of anticancer molecules in various oncology therapies. EP considerably boosts the absorptivity of targeted cells to anticancer molecules of different natures, thus upgrading their effectiveness. Its use in veterinary oncology has been widely explored, and some applications, such as electrochemotherapy (ECT), are currently approved as first-line treatments for several neoplastic conditions. Other applications include irreversible electroporation and EP-based cancer vaccines. In human oncology, EP is still mostly restricted to therapies for cutaneous tumors and the palliation of cutaneous and visceral metastases of malignant tumors. Fields where veterinary experience could help smooth the clinical transition to humans include intraoperative EP, interventional medicine and cancer vaccines. This article recapitulates the state of the art of EP in veterinary and human oncology, recounting the most relevant results to date.

2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628772

RESUMO

Due to the progressive ageing of the human population, the number of cancer cases is increasing. For this reason, there is an urgent need for new treatments that can prolong the lives of cancer patients or ensure them a good quality of life. Although significant progress has been made in the treatment of cancer in recent years and the survival rate of patients is increasing, limitations in the use of conventional therapies include the frequent occurrence of side effects and the development of resistance to chemotherapeutic agents. These limitations are prompting researchers to investigate whether combining natural agents with conventional drugs could have a positive therapeutic effect in cancer treatment. Several natural bioactive compounds, especially polyphenols, have been shown to be effective against cancer progression and do not exert toxic effects on healthy tissues. Many studies have investigated the possibility of combining polyphenols with conventional drugs as a novel anticancer strategy. Indeed, this combination often has synergistic benefits that increase drug efficacy and reduce adverse side effects. In this review, we provide an overview of the studies describing the synergistic effects of curcumin, a polyphenol that has been shown to have extensive cytotoxic functions against cancer cells, including combined treatment. In particular, we have described the results of recent preclinical and clinical studies exploring the pleiotropic effects of curcumin in combination with standard drugs and the potential to consider it as a promising new tool for cancer therapy.


Assuntos
Curcumina , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Qualidade de Vida , Terapia Combinada , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Antioxidants (Basel) ; 12(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237938

RESUMO

The maintenance of redox homeostasis is associated with a healthy status while the disruption of this mechanism leads to the development of various pathological conditions. Bioactive molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human health. In particular, increasing evidence suggests that their antioxidant ability is involved in the prevention of several human diseases. Some experimental data indicate that the activation of the nuclear factor 2-related erythroid 2 (Nrf2) pathway-the key mechanism in the maintenance of redox homeostasis-is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols. However, it is known that the latter must be metabolized before becoming active and that the intestinal microbiota play a key role in the biotransformation of some ingested food components. In addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible for the antioxidant action on the physiology of the host. The underlying mechanisms through which MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms through which MACs, polyphenols, and PUFAs can modulate the host's redox homeostasis through their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects and the role played by the alteration of the metabolism/composition of the gut microbiota in the generation of potential Nrf2-ligands (e.g., SCFAs) in the host's redox homeostasis.

4.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672146

RESUMO

Grapevine (Vitis vinifera L.) seeds are rich in polyphenols including proanthocyanidins, molecules with a variety of biological effects including anticancer action. We have previously reported that the grape seed semi-polar extract of Aglianico cultivar (AGS) was able to induce apoptosis and decrease cancer properties in different mesothelioma cell lines. Concomitantly, this extract resulted in enriched oligomeric proanthocyanidins which might be involved in determining the anticancer activity. Through transcriptomic and metabolomic analyses, we investigated in detail the anticancer pathway induced by AGS. Transcriptomics analysis and functional annotation allowed the identification of the relevant causative genes involved in the apoptotic induction following AGS treatment. Subsequent biological validation strengthened the hypothesis that MDM2 could be the molecular target of AGS and that it could act in both a p53-dependent and independent manner. Finally, AGS significantly inhibited tumor progression in a xenograft mouse model of mesothelioma, confirming also in vivo that MDM2 could act as molecular player responsible for the AGS antitumor effect. Our findings indicated that AGS, exerting a pro-apoptotic effect by hindering MDM2 pathway, could represent a novel source of anticancer molecules.


Assuntos
Extrato de Sementes de Uva , Mesotelioma , Proantocianidinas , Vitis , Humanos , Animais , Camundongos , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Sementes , Redes e Vias Metabólicas , Proteínas Proto-Oncogênicas c-mdm2
5.
Oncol Lett ; 24(2): 286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35814825

RESUMO

The serious side effects caused by chemotherapeutics and the development of cancer chemoresistance represent the most significant limitations in the treatment of cancer. Some alternative approaches have been developed in recent years, which are based on natural compounds, and have allowed important advances in cancer therapeutics. During the last 50 years, sponges have been considered a promising source of natural products from the marine environment, representing ~30% of all marine natural products. Among sponges, the Mediterranean species Geodia cydonium represents a potential source of these type of products with considerable biotechnological interest as pharmaceutical agents. The present study demonstrated the antiproliferative effect of an organic G. cydonium extract (GEOCYDO) against three human mesothelioma cell lines, MSTO-211H (MSTO), NCI-H2452 (NCI) and Ist-Mes2 (Mes2), which differ in their sensitivity (MSTO and NCI) and resistance (Mes2) to standard combined treatment with cisplatin and piroxicam. To this aim, the activity of the extract was evaluated by analyzing its effects on cell viability, cancer properties and cell cycle progression by means of colony formation assay, cell cycle analysis and protein expression analysis. The results revealed, in mesothelioma, this extract was able to reduce self-renewal, cell migration and it could induce cell cycle arrest in G0/G1 stage, thus blocking cell proliferation. In conclusion, to the best of our knowledge, the present results indicated for the first time that GEOCYDO can contain active compounds able to affect cell proliferation in mesothelioma, suggesting that it could be considered as a potential novel drug source for cancer treatment.

6.
J Exp Clin Cancer Res ; 40(1): 383, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863235

RESUMO

Short or small interfering RNAs (siRNAs) and microRNA (miRNAs) are molecules similar in size and function able to inhibit gene expression based on their complementarity with mRNA sequences, inducing the degradation of the transcript or the inhibition of their translation.siRNAs bind specifically to a single gene location by sequence complementarity and regulate gene expression by specifically targeting transcription units via posttranscriptional gene silencing. miRNAs can regulate the expression of different gene targets through their imperfect base pairing.This process - known as RNA interference (RNAi) - modulates transcription in order to maintain a correct physiological environment, playing a role in almost the totality of the cellular pathways.siRNAs have been evolutionary evolved for the protection of genome integrity in response to exogenous and invasive nucleic acids such as transgenes or transposons. Artificial siRNAs are widely used in molecular biology for transient silencing of genes of interest. This strategy allows to inhibit the expression of any target protein of known sequence and is currently used for the treatment of different human diseases including cancer.Modifications and rearrangements in gene regions encoding for miRNAs have been found in cancer cells, and specific miRNA expression profiles characterize the developmental lineage and the differentiation state of the tumor. miRNAs with different expression patterns in tumors have been reported as oncogenes (oncomirs) or tumor-suppressors (anti-oncomirs). RNA modulation has become important in cancer research not only for development of early and easy diagnosis tools but also as a promising novel therapeutic approach.Despite the emerging discoveries supporting the role of miRNAs in carcinogenesis and their and siRNAs possible use in therapy, a series of concerns regarding their development, delivery and side effects have arisen.In this review we report the biology of miRNAs and siRNAs in relation to cancer summarizing the recent methods described to use them as novel therapeutic drugs and methods to specifically deliver them to cancer cells and overcome the limitations in the use of these molecules.


Assuntos
MicroRNAs/genética , Neoplasias/terapia , RNA Interferente Pequeno/genética , RNA não Traduzido/genética , Humanos , Neoplasias/genética
8.
Sci Rep ; 11(1): 21151, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707182

RESUMO

Although the Mediterranean Sea covers approximately a 0.7% of the world's ocean area, it represents a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different areas of the Mediterranean: Faro Lake in Sicily and "Porto Paone", "Secca delle fumose", "Punta San Pancrazio" in the Gulf of Naples. Eight sponge species were collected from these sites and identified by morphological analysis and amplification of several conserved molecular markers (18S and 28S RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). In order to analyze the bacterial diversity of symbiotic communities among these different sampling sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great variability of the host-specific microbial communities. Our data highlight the occurrence of dominant and locally enriched microbes in the Mediterranean, together with the biotechnological potential of these sponges and their associated bacteria as sources of bioactive natural compounds.


Assuntos
Microbiota , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Código de Barras de DNA Taxonômico , Mar Mediterrâneo , Poríferos/classificação , Poríferos/genética , Simbiose
10.
Antioxidants (Basel) ; 9(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224984

RESUMO

Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress-especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration. In this study, we investigated the neuroprotective effect of Ginkgo biloba extract (EGb 761) against H2O2 induced apoptosis in SK-N-BE neuroblastoma cells. We analysed the molecular signalling pathway involved in the apoptotic cell death. H2O2 induced an increased acetylation of p53 lysine 382, a reduction in mitochondrial membrane potential, an increased BAX/Bcl-2 ratio and consequently increased Poly (ADP-ribose) polymerase (PARP) cleavage. All these effects were blocked by EGb 761 treatment. Thus, EGb 761, acting as intracellular antioxidant, protects neuroblastoma cells against activation of p53 mediated pathway and intrinsic mitochondrial apoptosis. Our results suggest that EGb 761, protecting against oxidative-stress induced apoptotic cell death, could potentially be used as nutraceutical for the prevention and treatment of neurodegenerative diseases.

11.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272735

RESUMO

The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Animais , Antioxidantes/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Nutrients ; 11(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614630

RESUMO

Curcumin, a nontoxic, naturally occurring polyphenol, has been recently proposed for the management of neurodegenerative and neurological diseases. However, a discrepancy exists between the well-documented pharmacological activities that curcumin seems to possess in vivo and its poor aqueous solubility, bioavailability, and pharmacokinetic profiles that should limit any therapeutic effect. Thus, it is possible that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of curcumin are present after oral administration. Indeed, a new working hypothesis that could explain the neuroprotective role of curcumin despite its limited availability is that curcumin acts indirectly on the central nervous system by influencing the "microbiota-gut-brain axis", a complex bidirectional system in which the microbiome and its composition represent a factor which preserves and determines brain "health". Interestingly, curcumin and its metabolites might provide benefit by restoring dysbiosis of gut microbiome. Conversely, curcumin is subject to bacterial enzymatic modifications, forming pharmacologically more active metabolites than curcumin. These mutual interactions allow to keep proper individual physiologic functions and play a key role in neuroprotection.


Assuntos
Curcumina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Humanos
13.
J Exp Clin Cancer Res ; 38(1): 360, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419989

RESUMO

BACKGROUND: A major limitation in the treatment for malignant mesothelioma is related to serious side effects caused by chemotherapeutics and to the development of cancer-resistance. Advances in cancer therapies have been reached thanks to the introduction of alternative approaches, such as the use of phytochemicals. Curcumin-C3complex®/Bioperine® is a commercially standardized extract containing a ratio-defined mixture of three curcuminoids and piperine that greatly increase its bioavailability. Interestingly, the anticancer effect of this formulation has been described in different studies and several clinical trials have been started, but to our knowledge none refers to human mesothelioma. METHODS: Curcumin-C3complex®/Bioperine® anticancer effect was evaluated in vitro in different human mesothelioma cell lines analysing cell proliferation, colony-forming assay, wound healing assays, invasion assay and FACS analysis. In vivo anticancer properties were analysed in a mesothelioma xenograft mouse model in CD1 Nude mice. RESULTS: Curcumin-C3complex®/Bioperine® in vitro induced growth inhibition in all mesothelioma cell lines analysed in a dose- and time-depended manner and reduced self-renewal cell migration and cell invasive ability. Cell death was due to apoptosis. The analysis of the molecular signalling pathway suggested that intrinsic apoptotic pathway is activated by this treatment. This treatment in vivo delayed the growth of the ectopic tumours in a mesothelioma xenograft mouse model. CONCLUSIONS: Curcumin-C3complex®/Bioperine® treatment strongly reduces in vitro tumorigenic properties of mesothelioma cells by impairing cellular self-renewal ability, proliferative cell rate and cell migration and delays tumor growth in xenograft mouse model by reducing angiogenesis and increasing apoptosis. Considering that curcumin in vivo synergizes drug effects, its administration to treatment regimen may help to enhance drug therapeutic efficacy in mesothelioma. Our results suggest that implementation of standard pharmacological therapies with novel compounds may pave the way to develop alternative approaches to mesothelioma.


Assuntos
Antineoplásicos/farmacologia , Curcumina/química , Curcumina/farmacologia , Mesotelioma/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Apoptose , Movimento Celular , Proliferação de Células , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Neural Regen Res ; 13(12): 2055-2059, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30323120

RESUMO

Increasing evidence suggests that food ingested polyphenols can have beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury. Moreover, polyphenols have been reported to promote cognitive functions. Biotransformation of polyphenols is needed to obtain metabolites active in brain and it occurs through their processing by gut microbiota. Polyphenols metabolites could directly act as neurotransmitters crossing the blood-brain barrier or indirectly by modulating the cerebrovascular system. The microbiota-gut-brain axis is considered a neuroendocrine system that acts bidirectionally and plays an important role in stress responses. The metabolites produced by microbiota metabolism can modulate gut bacterial composition and brain biochemistry acting as neurotransmitters in the central nervous system. Gut microbiota composition can be influenced by dietary ingestion of natural bioactive molecules such as probiotics, prebiotics and polyphenol. Microbiota composition can be altered by dietary changes and gastrointestinal dysfunctions are observed in neurodegenerative diseases. In addition, several pieces of evidence support the idea that alterations in gut microbiota and enteric neuroimmune system could contribute to onset and progression of these age-related disorders. The impact of polyphenols on microbiota composition strengthens the idea that maintaining a healthy microbiome by modulating diet is essential for having a healthy brain across the lifespan. Moreover, it is emerging that they could be used as novel therapeutics to prevent brain from neurodegeneration.

15.
Curr Drug Metab ; 19(6): 478-489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623833

RESUMO

BACKGROUND: The gut-brain axis is considered a neuroendocrine system, which connects the brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for health conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. METHOD: We selected recent papers analysing the association among alterations in the homeostasis of the gut-brain axis and neurological disorders. In addition, we described how bioactive natural molecules - such as polyphenols - by influencing gut microbiota composition may help rescue neural signalling pathways impaired in neurodegenerative diseases. RESULTS: Recent studies show that gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Gut bacterial community plays a key role in maintaining normal brain functions. Metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both the gut bacterial composition and brain biochemistry. CONCLUSION: This review highlights the role of gut microbiota in regulating regulates brain biochemistry and the role of microbiota metabolites on neuropathologies. Dietary ingestion of probiotics, prebiotics and polyphenols affect gut microbiota composition underlining the key role played by specific metabolites not only in the gut microbiota composition but also in the brain health maintenance.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas/microbiologia , Animais , Humanos , Polifenóis/uso terapêutico , Prebióticos , Probióticos/uso terapêutico
16.
Int J Pharm ; 520(1-2): 21-28, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28130197

RESUMO

In this work, curcumin (CURC)-encapsulating nanoparticles (NPs), made up of an amphiphilic blend of poloxamers and PLGA (PPC NPs) at different polymer concentrations, were prepared by nanoprecipitation. CURC was preliminarily complexed with (2-hydroxypropyl)-ß-cyclodextrin (HPßCD) to improve its loading efficiency. The formation of host-guest complexes of CURC with HPßCD (CD-CURC) was confirmed by means of 1HNMR studies and differential scanning calorimetry (DSC). Nanoprecipitation allowed to obtain NPs with a small size (90-120nm depending on the polymer concentration), a narrow size distribution and stable in water for 30days at 4°C and in RPMI-1640 cell culture medium up to 72h at 37°C. The in vitro release of CD-CURC, sustained up to 5days, was governed mainly by a diffusive mechanism. It was also found that the produced NPs were efficiently internalized by mesothelioma cells (MSTO-211H) in the cytoplasmic space, at an extent strongly dependent on NP size and polydispesity index, therefore pointing at the importance of NP preparation method in improving their uptake.


Assuntos
Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Precipitação Química , Curcumina/administração & dosagem , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Ácido Láctico/química , Nanopartículas/metabolismo , Tamanho da Partícula , Poloxâmero/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
17.
Sci Rep ; 7: 41316, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117381

RESUMO

Blood-brain barrier (BBB) breakdown, due to the concomitant disruption of the tight junctions (TJs), normally required for the maintenance of BBB function, and to the altered transport of molecules between blood and brain and vice-versa, has been suggested to significantly contribute to the development and progression of different brain disorders including Huntington's disease (HD). Although the detrimental consequence the BBB breakdown may have in the clinical settings, the timing of its alteration remains elusive for many neurodegenerative diseases. In this study we demonstrate for the first time that BBB disruption in HD is not confined to established symptoms, but occurs early in the disease progression. Despite the obvious signs of impaired BBB permeability were only detectable in concomitance with the onset of the disease, signs of deranged TJs integrity occur precociously in the disease and precede the onset of overt symptoms. To our perspective this finding may add a new dimension to the horizons of pathological mechanisms underlying this devastating disease, however much remains to be elucidated for understanding how specific BBB drug targets can be approached in the future.


Assuntos
Barreira Hematoencefálica/patologia , Doença de Huntington/patologia , Envelhecimento/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , Permeabilidade
18.
Pediatr Obes ; 12(5): 380-387, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27187765

RESUMO

BACKGROUND: Bisphenol A (BPA) exposure has been associated with increased incidence of diabetes and obesity in adults. OBJECTIVES: To evaluate whether an association between BPA urinary levels and insulin resistance as well as adiponectin and resistin production and serum concentrations may occur in obese children. METHODS: Clinical and biochemical features of 141 obese children were collected. Serum resistin and adiponectin were evaluated. Insulin resistance and urinary BPA levels were assessed. Moreover, the effect of BPA on adiponectin and resistin gene expression in adipocytes from eight normal weight prepubertal children was investigated by quantitative real-time RT-PCR (qPCR). RESULTS: Direct association between BPA and homeostasis model assessment (r = 0.23; p: 0.0069) and a strong inverse association between BPA and adiponectin have been found (r = -0.48; p < 0.0001). In adipocytes, resistin expression was detected only after BPA treatment, while adiponectin expression resulted down-regulated after BPA exposure (p < 0.05 at both 10 and 100 nM BPA concentrations). CONCLUSIONS: We suggest the involvement of BPA in the development of insulin resistance in childhood obesity highlighting that urinary BPA levels are directly associated with insulin resistance regardless of BMI. This association may be explained, at least partly, by the findings that BPA affects resistin and adiponectin production in adipose tissue cultures.


Assuntos
Adiponectina/metabolismo , Compostos Benzidrílicos/efeitos adversos , Resistência à Insulina/genética , Obesidade Infantil/genética , Fenóis/efeitos adversos , Resistina/metabolismo , Tecido Adiposo/metabolismo , Adolescente , Compostos Benzidrílicos/urina , Criança , Estudos Transversais , Feminino , Expressão Gênica , Humanos , Masculino , Fenóis/urina , Reação em Cadeia da Polimerase em Tempo Real
19.
Mol Cell Endocrinol ; 422: 74-83, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604029

RESUMO

In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome.


Assuntos
Decídua/citologia , Disruptores Endócrinos/efeitos adversos , Endométrio/citologia , Células Estromais/efeitos dos fármacos , Triclosan/efeitos adversos , Adulto , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Decídua/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Pessoa de Meia-Idade , Progesterona/farmacologia , Prolactina/genética , Prolactina/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Regulação para Cima
20.
J Mol Endocrinol ; 54(3): 289-303, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25878060

RESUMO

Bisphenol A (BPA) is a xenobiotic endocrine-disrupting chemical. In vitro and in vivo studies have indicated that BPA alters endocrine-metabolic pathways in adipose tissue, which increases the risk of metabolic disorders and obesity. BPA can affect adipose tissue and increase fat cell numbers or sizes by regulating the expression of the genes that are directly involved in metabolic homeostasis and obesity. Several studies performed in animal models have accounted for an obesogen role of BPA, but its effects on human adipocytes - especially in children - have been poorly investigated. The aim of this study is to understand the molecular mechanisms by which environmentally relevant doses of BPA can interfere with the canonical endocrine function that regulates metabolism in mature human adipocytes from prepubertal, non-obese children. BPA can act as an estrogen agonist or antagonist depending on the physiological context. To identify the molecular signatures associated with metabolism, transcriptional modifications of mature adipocytes from prepubertal children exposed to estrogen were evaluated by means of microarray analysis. The analysis of deregulated genes associated with metabolic disorders allowed us to identify a small group of genes that are expressed in an opposite manner from that of adipocytes treated with BPA. In particular, we found that BPA increases the expression of pro-inflammatory cytokines and the expression of FABP4 and CD36, two genes involved in lipid metabolism. In addition, BPA decreases the expression of PCSK1, a gene involved in insulin production. These results indicate that exposure to BPA may be an important risk factor for developing metabolic disorders that are involved in childhood metabolism dysregulation.


Assuntos
Adipócitos/metabolismo , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Transcriptoma/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Células Cultivadas , Criança , Estradiol/farmacologia , Feminino , Humanos , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...