Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Vis ; 15: 1620-30, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19693289

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a leading cause of vision loss and blindness among adults between the age 20 to 74. Changes in ionotropic glutamate receptor subunit composition can affect retinal glutamatergic neurotransmission and, therefore, contribute to visual impairment. The purpose of this study was to investigate whether diabetes leads to changes in ionotropic glutamate receptor subunit expression at the protein and mRNA level in the rat retina. METHODS: Changes in the expression of ionotropic glutamate receptor subunits were investigated at the mRNA and protein levels in retinas of streptozotocin (STZ)-induced diabetic and age-matched control rats. Animals were euthanized one, four and 12 weeks after the onset of diabetes. Retinal protein extracts were prepared, and the receptor subunit levels were assessed by western blotting. Transcript levels were assessed by real-time quantitative PCR. RESULTS: Transcript levels of most ionotropic glutamate receptor subunits were not significantly changed in the retinas of diabetic rats, as compared to age-matched controls but protein levels of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), kainate, and N-methyl-D-aspartic acid receptors (NMDA) receptors were found to be altered. CONCLUSIONS: The results provide evidence that diabetes affects the retinal content of ionotropic glutamate receptor subunits at the protein level. The possible implications of these changes on retinal physiology and visual impairment in DR are discussed.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Retina/metabolismo , Retina/patologia , Processamento Alternativo/genética , Animais , Glicemia/metabolismo , Diabetes Mellitus/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Invest Ophthalmol Vis Sci ; 47(9): 4130-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16936133

RESUMO

PURPOSE: Altered glutamatergic neurotransmission and calcium homeostasis may contribute to retinal neural cell dysfunction and apoptosis in diabetic retinopathy (DR). The purpose of this study was to determine the effect of high glucose on the protein content of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate glutamate receptor subunits, particularly the GluR2 subunit, because it controls Ca2+ permeability of AMPA receptor-associated channels. The effect of high glucose on the concentration of cytosolic free calcium ([Ca2+]i) was also investigated. METHODS: The protein content of GluR1, GluR2, GluR6/7, and KA2 subunits was assessed by Western blot. Cobalt staining was used to identify cells containing calcium/cobalt-permeable AMPA receptors. The [Ca2+]i changes evoked by KCl or kainate were recorded by live-cell confocal microscopy in R28 cells and in primary cultures of rat retina, loaded with fluo-4. RESULTS: In primary cultures, high glucose significantly decreased the protein content of GluR1 and GluR6/7 subunits and increased the protein content of GluR2 and KA2 subunits. High glucose decreased the number of cobalt-positive cells, suggesting a decrease in calcium permeability through AMPA receptor-associated channels. In high-glucose-treated cells, changes in [Ca2+]i were greater than in control cells, and the recovery to basal levels was delayed. However, in the absence of Na+, to prevent the activation of voltage-sensitive calcium channels, the [Ca2+]i changes evoked by kainate in the presence of cyclothiazide, which inhibits AMPA receptor desensitization, were significantly lower in high-glucose-treated cells than in control cultures, further indicating that AMPA receptors were less permeable to calcium. Mannitol, used as an osmotic control, did not cause significant changes compared with the control. CONCLUSIONS: The results suggest that elevated glucose may alter glutamate neurotransmission and calcium homeostasis in the retina, which may have implications for the mechanisms of vision loss in DR.


Assuntos
Cálcio/metabolismo , Glucose/farmacologia , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Retina/efeitos dos fármacos , Compostos de Anilina/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Técnica Indireta de Fluorescência para Anticorpo , Homeostase/efeitos dos fármacos , Microscopia Confocal , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/citologia , Retina/metabolismo , Xantenos/metabolismo
3.
Neurochem Int ; 48(6-7): 453-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16513217

RESUMO

Several evidences suggest that glutamate may be involved in retinal neurodegeneration in diabetic retinopathy (DR). For that reason, we investigated whether high glucose or diabetes affect the accumulation and the release of [(3)H]-D-aspartate, which was used as a marker of the glutamate transmitter pool. The accumulation of [(3)H]-D-aspartate did not change in cultured retinal neural cells treated with high glucose (30 mM) for 7 days. However, the release of [(3)H]-D-aspartate, evoked by 50 mM KCl, significantly increased in retinal cells exposed to high glucose. Mannitol, which was used as an osmotic control, did not cause any significant changes in both accumulation and release of [(3)H]-D-aspartate. In the retinas, 1 week after the onset of diabetes, both the accumulation and release of [(3)H]-D-aspartate were unchanged comparing to the retinas of age-matched controls. However, after 4 weeks of diabetes, the accumulation of [(3)H]-D-aspartate in diabetic retinas decreased and the release of [(3)H]-D-aspartate increased, compared to age-matched control retinas. These results suggest that high glucose and diabetes increase the evoked release of D-aspartate in the retina, which may be correlated with the hypothesis of glutamate-induced retinal neurodegeneration in DR.


Assuntos
Ácido Aspártico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Retina/metabolismo , Animais , Ácido Aspártico/biossíntese , Células Cultivadas , Masculino , Ratos , Ratos Wistar , Retina/patologia , Trítio
4.
Brain Res Dev Brain Res ; 140(1): 75-84, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12524178

RESUMO

The functionality of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in chick embryo retina cells during development in vitro was studied by using Co(2+) uptake, and these data were correlated with the expression of the AMPA receptor subunit GluR4. We found that at 5 h in vitro only a small number of cells took up Co(2+) upon stimulation with 100 microM kainate or other AMPA receptor agonists, in the presence of cyclothiazide (CTZ), to inhibit desensitisation. The number of cells sensitive to kainate increased from 5 h in vitro to 3 days in vitro (DIV), and remained relatively constant until 14 DIV. When the cells were stimulated with (2S,4S)-4-methylglutamic acid (30 microM), a specific kainate receptor agonist, after inhibiting desensitisation with concanavalin A, we did not observe an increase in the number of cells responding, as compared to the control. The expression of the AMPA receptor subunit GluR4 during development was detected by immunofluorescence mainly at the perinuclear region of the cells, and the number of positive cells increased from 5 h in vitro to 7 DIV, and remained relatively constant until 14 DIV. The results suggest that AMPA receptors can be functionally active at early embryonic stages (5 h in vitro) in cultured retinal neurons, although in only a few cells, before synapse formation (E12). The localisation of GluR4 was well correlated with Co(2+) entry, since the strongest GluR4 immunoreactivity was found in the regions that showed the most intense labelling with Co(2+). Finally, we found that the expression levels of GluR4 at the neurites increased between 5 h in vitro and 7 DIV, near the period of synapse formation.


Assuntos
Cobalto/farmacocinética , Receptores de AMPA/genética , Receptores de AMPA/fisiologia , Retina/embriologia , Animais , Benzotiadiazinas/farmacologia , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Ácido Caínico/farmacologia , Cinética , Subunidades Proteicas/genética , Retina/fisiologia
5.
Int J Dev Neurosci ; 20(1): 1-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12008069

RESUMO

The activity and the subunit expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate ionotropic glutamate receptors were studied in retina cells developing in chick embryos and in retina cells cultured as retinospheroids, at the same stages of development. In the retinospheroids, the activity of the AMPA/kainate receptors was monitored by following the changes in the intracellular free calcium concentration ([Ca(2+)](i)), in response to AMPA, kainate or to L-glutamate, and the expression of the receptor subunits GluR1, GluR2/3, GluR4 and GluR6/7 was determined in the retinospheroids and in chick retinas by immunodetection using polyclonal antibodies. The changes in [Ca(2+)](i) in response to 400 microM kainate increased from 5h in vitro to 3 days, and remained constant until day 14, whereas the [Ca(2+)](i) in response to 500 microM L-glutamate or 400 microM AMPA increased from 5h in vitro to 3 days, and thereafter decreased slightly until day 14. The [Ca(2+)](i) responses to kainate are mainly due to AMPA receptor stimulation, since the signals were abolished by LY303070, the AMPA receptor antagonist, and were not affected by MK-801, the NMDA receptor antagonist. In retinospheroids, the levels of expression of GluR1 subunit increased from 5h in vitro until day 7, then decreased until day 14. The levels of expression of GluR2/3 and GluR4 subunits increased from 5h in vitro until day 10, and remained constant until day 14. The levels of kainate receptor subunits GluR6/7 increased from 5h in vitro until day 3, and thereafter decreased slightly until day 14. In the retinas, the expression of GluR1 and GluR6/7 subunits increased from day 8 until day 15, and then decreased until day 22 (post-natal 1). The subunits GluR2/3 and GluR4 increased from day 8 until day 18, and remained constant until day 22. The results suggest that AMPA/kainate receptors are expressed at early embryonic stages, although at low levels and before synapse formation (E12). However, the AMPA receptors are not completely functional at the first stage studied since they do not respond to the agonist AMPA. Also, the patterns of AMPA/kainate receptor subunit expression in retinospheroids of chick embryo retina cells cultured in vitro and in retina cells developing in the embryo (in vivo) were similar, indicating that the AMPA/kainate receptor subunits expression in these primary cultures mimics their expression in the developing chick retina.


Assuntos
Diferenciação Celular/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Embrião de Galinha , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Imuno-Histoquímica , Ácido Caínico/farmacologia , Neurônios/citologia , Receptores de AMPA/efeitos dos fármacos , Receptores de Ácido Caínico/efeitos dos fármacos , Retina/citologia , Esferoides Celulares , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Receptor de GluK2 Cainato
6.
Brain Res Mol Brain Res ; 99(2): 125-33, 2002 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-11978403

RESUMO

The N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors were studied in retina cells developing in chick embryos and in retina cells cultured as retinospheroids, at the same stages of development. In the retinospheroids, the activity of the NMDA receptors was followed by monitoring the changes in the intracellular free calcium concentration ([Ca2+](i)), in response to NMDA or to L-glutamate. The expression of the subunits NMDAR1, NMDAR2A/B and NMDAR2C in the retinospheroids and in chick retinas were determined by Western blot analyses. The changes in [Ca2+](i) in response to 400 microM NMDA increased from 5 h in vitro to 3 days in vitro (DIV) and remained constant until 14 DIV, whereas the [Ca2+](i) response to 500 microM L-glutamate increased from 5 h in vitro to 3 DIV and decreased slightly until 14 DIV. In the retinospheroids, the expression of the NMDAR1 and NMDAR2A/B subunits increased from 5 h in vitro until 14 DIV, whereas the NMDAR2C subunit increased from 5 h in vitro until 10 DIV and remained constant until 14 DIV. In the retinas, the expression of NMDAR1 increased from embryonic day 8 (E8) until E15, decreased until E18, and increased again until day 22 (post-hatched 1, PH1). The NMDAR2A/B increased from E8 until E18 and decreased slightly until PH1, whereas the NMDAR2C subunit increased from E8 until E15, remained constant until E18, and increased again until PH1. The results suggest that NMDA receptors are expressed and functionally active at early embryonic stages in the retina and in retinospheroids, before synapse formation (E12). However, the calcium responses to NMDA were relatively constant from 3 DIV until 14 DIV, showing no correlation with the increase in the expression of the studied NMDA receptor subunit during the same period. Also, the patterns of NMDA receptor subunits expressed in chick embryo retina cells cultured in vitro and in retina cells developing in vivo were similar.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/embriologia , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Ácido Glutâmico/farmacologia , N-Metilaspartato/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Retina/citologia , Retina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...