Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 23: 120-129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043188

RESUMO

Toxoplasma gondii is an obligate intracellular parasite in the phylum Apicomplexa that causes toxoplasmosis in humans and animals worldwide. Despite its prevalence, there is currently no effective vaccine or treatment for chronic infection. Although there are therapies against the acute stage, prolonged use is toxic and poorly tolerated. This study aims to explore the potential of repurposing topotecan and 10-hydroxycamptothecin (HCPT) as drugs producing double strand breaks (DSBs) in T. gondii. DSBs are mainly repaired by Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). Two T. gondii strains, RHΔHXGPRT and RHΔKU80, were used to compare the drug's effects on parasites. RHΔHXGPRT parasites may use both HRR and NHEJ pathways but RHΔKU80 lacks the KU80 protein needed for NHEJ, leaving only the HRR pathway. Here we demonstrate that topotecan and HCPT, both topoisomerase I venoms, affected parasite replication in a concentration-dependent manner. Moreover, variations in fluorescence intensity measurements for the H2A.X phosphorylation mark (γH2A.X), an indicator of DNA damage, were observed in intracellular parasites under drug treatment conditions. Interestingly, intracellular replicative parasites without drug treatment show a strong positive staining for γH2A.X, suggesting inherent DNA damage. Extracellular (non-replicating) parasites did not exhibit γH2A.X staining, indicating that the basal level of DNA damage is likely to be associated with replicative stress. A high rate of DNA replication stress possibly prompted the evolution of an efficient repair machinery in the parasite, making it an attractive target. Our findings show that topoisomerase 1 venoms are effective antiparasitics blocking T. gondii replication.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/genética , Topotecan/farmacologia , Topotecan/metabolismo , Reparo do DNA , Dano ao DNA
2.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194943, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37217032

RESUMO

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.


Assuntos
Histonas , Toxoplasma , Animais , Camundongos , Histonas/metabolismo , Toxoplasma/genética , Acetilação , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional
3.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36824796

RESUMO

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.

4.
Epigenomes ; 6(3)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135316

RESUMO

Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32656097

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis in animals and humans. This infection is transmitted to humans through oocysts released in the feces of the felines into the environment or by ingestion of undercooked meat. This implies that toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition, chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with economic losses in the sector. It is also a health problem in pets such as cats and dogs. Although there are therapies against this infection in its acute stage, they are not able to permanently eliminate the parasite and sometimes they are not well tolerated. To develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii. In this review, we will discuss the importance of the homologous recombination repair (HRR) pathway in the parasite's lytic cycle and how components of these processes can be potential molecular targets for new drug development programs. In that sense, the effect of different DNA damage agents or HHR inhibitors on the growth and replication of T. gondii will be described. Multitarget drugs that were either associated with other targets or were part of general screenings are included in the list, providing a thorough revision of the drugs that can be tested in other scenarios.


Assuntos
Preparações Farmacêuticas , Toxoplasma , Toxoplasmose Animal , Animais , Gatos , Dano ao DNA , Reparo do DNA , Cães , Ovinos , Toxoplasma/genética , Toxoplasmose Animal/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...