Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750214

RESUMO

Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.

2.
J Orthop Res ; 41(4): 823-833, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35949192

RESUMO

Cortical bone allograft sterilized with a standard γ-radiation dose of 25-35kGy has demonstrated reduced static and cyclic fracture resistance compared with unirradiated bone. To mitigate radiation damage, we recently observed a dose-dependent response of high-cycle fatigue behavior of human cortical bone from 0 to 25 kGy, with lower doses exhibiting logarithmically longer fatigue lives. The objectives of this study were as follows: (1) to determine whether fracture toughness, work-to-fracture, and fatigue crack propagation resistance of human cortical bone are also radiation dose-dependent, and (2) to determine the associations of radiation dose and a Raman biomarker for collagen disorder with fracture properties. Compact tension specimens were machined from two donor femoral pairs and allocated to four treatment groups: 0 (unirradiated control), 10, 17.5, and 25 kGy. Fracture toughness specimens were monotonically loaded to failure and the critical stress intensity factor (KC ) was determined. Work-to-fracture was calculated from the load versus displacement integral up to fracture. Fatigue crack propagation specimens were cyclically loaded under constant room-temperature irrigation and fatigue crack growth rate (da/dN) and cyclic stress intensity (∆K) were calculated. Fracture toughness, work-to-fracture, and fatigue crack propagation resistance decreased 18%, 33%, and 15-fold from 0 to 25 kGy, respectively (p < 0.05). Radiation dose was more predictive of fracture properties than collagen disorder. These findings support that quasi-static and fatigue fracture properties of cortical bone are radiation dose-dependent within this dose range. The structural alterations arising from irradiation that cause these losses in fracture resistance remain to be elucidated.


Assuntos
Osso e Ossos , Fraturas de Estresse , Humanos , Osso Cortical , Colágeno , Doses de Radiação , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...