Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(21): 4741-4750.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37827153

RESUMO

The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.


Assuntos
Atmosfera , Oxigênio , Oceanos e Mares , Atmosfera/química , Biomassa , Carbono
2.
Nat Commun ; 13(1): 4274, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879324

RESUMO

Standard proxies for reconstructing surface mass balance (SMB) in Antarctic ice cores are often inaccurate or coarsely resolved when applied to more complicated environments away from dome summits. Here, we propose an alternative SMB proxy based on photolytic fractionation of nitrogen isotopes in nitrate observed at 114 sites throughout East Antarctica. Applying this proxy approach to nitrate in a shallow core drilled at a moderate SMB site (Aurora Basin North), we reconstruct 700 years of SMB changes that agree well with changes estimated from ice core density and upstream surface topography. For the under-sampled transition zones between dome summits and the coast, we show that this proxy can provide past and present SMB values that reflect the immediate local environment and are derived independently from existing techniques.


Assuntos
Camada de Gelo , Nitratos , Regiões Antárticas , Isótopos de Nitrogênio , Óxidos de Nitrogênio , Luz Solar
3.
Proc Natl Acad Sci U S A ; 119(19): e2117341119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500113

RESUMO

SignificanceEarth system's response to major perturbations is of paramount interest. On the basis of multiple isotope compositions for pyrite, carbonate-associated sulfate, carbonates, and organics within, we inferred that the much-debated, enigmatic, extremely 13C-depleted calcite cements in the ∼635-Ma cap carbonates in South China preserve geochemical evidence for marine microbial sulfate reduction coupled to anaerobic oxidation of methane. This interpretation implies the existence of a brief interval of modern-level marine sulfate. We determined that this interval coincides with the earliest Ediacaran 17O-depletion episode, and both likely occurred within ∼50 ky since the onset of the 635-Ma meltdown, revealing an astonishing pace of transformation of the Earth system in the aftermath of Earth's latest snowball glaciation.

5.
Sci Adv ; 6(24): eaay6647, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577504

RESUMO

Snowball Earth episodes, times when the planet was covered in ice, represent the most extreme climate events in Earth's history. Yet, the mechanisms that drive their initiation remain poorly constrained. Current climate models require a cool Earth to enter a Snowball state. However, existing geologic evidence suggests that Earth had a stable, warm, and ice-free climate before the Neoproterozoic Sturtian global glaciation [ca. 717 million years (Ma) ago]. Here, we present eruption ages for three felsic volcanic units interbedded with glaciolacustrine sedimentary rocks from southwest Virginia, USA, that demonstrate that glacially influenced sedimentation occurred at tropical latitudes ca. 751 Ma ago. Our findings are the first geologic evidence of a cool climate teetering on the edge of global glaciation several million years before the Sturtian Snowball Earth.

6.
Astrobiology ; 20(5): 628-636, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32228301

RESUMO

Earth's ocean-atmosphere system has undergone a dramatic but protracted increase in oxygen (O2) abundance. This environmental transition ultimately paved the way for the rise of multicellular life and provides a blueprint for how a biosphere can transform a planetary surface. However, estimates of atmospheric oxygen levels for large intervals of Earth's history still vary by orders of magnitude-foremost for Earth's middle history. Historically, estimates of mid-Proterozoic (1.9-0.8 Ga) atmospheric oxygen levels are inferred based on the kinetics of reactions occurring in soils or in the oceans, rather than being directly tracked by atmospheric signatures. Rare oxygen isotope systematics-based on quantifying the rare oxygen isotope 17O in addition to the conventionally determined 16O and 18O-provide a means to track atmospheric isotopic signatures and thus potentially provide more direct estimates of atmospheric oxygen levels through time. Oxygen isotope signatures that deviate strongly from the expected mass-dependent relationship between 16O, 17O, and 18O develop during ozone formation, and these "mass-independent" signals can be transferred to the rock record during oxidation reactions in surface environments that involve atmospheric O2. The magnitude of these signals is dependent upon pO2, pCO2, and the overall extent of biospheric productivity. Here, we use a stochastic approach to invert the mid-Proterozoic Δ17O record for a new estimate of atmospheric pO2, leveraging explicit coupling of pO2 and biospheric productivity in a biogeochemical Earth system model to refine the range of atmospheric pO2 values that is consistent with a given observed Δ17O. Using this approach, we find new evidence that atmospheric oxygen levels were less than ∼1% of the present atmospheric level (PAL) for at least some intervals of the Proterozoic Eon.


Assuntos
Atmosfera/química , Sedimentos Geológicos/química , Isótopos de Oxigênio/química , Oxigênio/análise , Sulfato de Cálcio/química , Fracionamento Químico , Modelos Teóricos , Peso Molecular , Oxirredução , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 116(35): 17207-17212, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405980

RESUMO

It has been hypothesized that the overall size of-or efficiency of carbon export from-the biosphere decreased at the end of the Great Oxidation Event (GOE) (ca. 2,400 to 2,050 Ma). However, the timing, tempo, and trigger for this decrease remain poorly constrained. Here we test this hypothesis by studying the isotope geochemistry of sulfate minerals from the Belcher Group, in subarctic Canada. Using insights from sulfur and barium isotope measurements, combined with radiometric ages from bracketing strata, we infer that the sulfate minerals studied here record ambient sulfate in the immediate aftermath of the GOE (ca. 2,018 Ma). These sulfate minerals captured negative triple-oxygen isotope anomalies as low as ∼ -0.8‰. Such negative values occurring shortly after the GOE require a rapid reduction in primary productivity of >80%, although even larger reductions are plausible. Given that these data imply a collapse in primary productivity rather than export efficiency, the trigger for this shift in the Earth system must reflect a change in the availability of nutrients, such as phosphorus. Cumulatively, these data highlight that Earth's GOE is a tale of feast and famine: A geologically unprecedented reduction in the size of the biosphere occurred across the end-GOE transition.

8.
Sci Adv ; 5(7): eaaw1480, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355330

RESUMO

A sulfide-oxidizing microorganism, Desulfurivibrio alkaliphilus (DA), generates a consistent enrichment of sulfur-34 (34 S) in the produced sulfate of +12.5 per mil or greater. This observation challenges the general consensus that the microbial oxidation of sulfide does not result in large 34 S enrichments and suggests that sedimentary sulfides and sulfates may be influenced by metabolic activity associated with sulfide oxidation. Since the DA-type sulfide oxidation pathway is ubiquitous in sediments, in the modern environment, and throughout Earth history, the enrichments and depletions in 34 S in sediments may be the combined result of three microbial metabolisms: microbial sulfate reduction, the disproportionation of external sulfur intermediates, and microbial sulfide oxidation.


Assuntos
Deltaproteobacteria/metabolismo , Sulfatos/metabolismo , Isótopos de Enxofre/química , Fracionamento Químico , Deltaproteobacteria/química , Redes e Vias Metabólicas , Oxirredução , Sulfatos/química , Isótopos de Enxofre/metabolismo
9.
Nat Commun ; 9(1): 3019, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068999

RESUMO

Termination of the terminal Cryogenian Marinoan snowball Earth glaciation (~650-635 Ma) is associated with the worldwide deposition of a cap carbonate. Modeling studies suggest that, during and immediately following deglaciation, the ocean may have experienced a rapid rise in pH and physical stratification followed by oceanic overturn. Testing these predictions requires the establishment of a high-resolution sequence of events within sedimentary records. Here we report the conspicuous occurrence of pyrite concretions in the topmost Nantuo Formation (South China) that was deposited in the Marinoan glacial deposits. Sedimentary facies and sulfur isotope data indicate pyrite precipitation in the sediments with H2S diffusing from the overlying sulfidic/euxinic seawater and Fe (II) from diamictite sediments. These observations suggest a transient but widespread presence of marine euxinia in an ocean characterized by redox stratification, high bioproductivity, and high-fluxes of sulfate from chemical weathering before the deposition of the cap carbonate.

10.
Nature ; 559(7715): 613-616, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022163

RESUMO

The global biosphere is commonly assumed to have been less productive before the rise of complex eukaryotic ecosystems than it is today1. However, direct evidence for this assertion is lacking. Here we present triple oxygen isotope measurements (∆17O) from sedimentary sulfates from the Sibley basin (Ontario, Canada) dated to about 1.4 billion years ago, which provide evidence for a less productive biosphere in the middle of the Proterozoic eon. We report what are, to our knowledge, the most-negative ∆17O values (down to -0.88‰) observed in sulfates, except for those from the terminal Cryogenian period2. This observation demonstrates that the mid-Proterozoic atmosphere was distinct from what persisted over approximately the past 0.5 billion years, directly reflecting a unique interplay among the atmospheric partial pressures of CO2 and O2 and the photosynthetic O2 flux at this time3. Oxygenic gross primary productivity is stoichiometrically related to the photosynthetic O2 flux to the atmosphere. Under current estimates of mid-Proterozoic atmospheric partial pressure of CO2 (2-30 times that of pre-anthropogenic levels), our modelling indicates that gross primary productivity was between about 6% and 41% of pre-anthropogenic levels if atmospheric O2 was between 0.1-1% or 1-10% of pre-anthropogenic levels, respectively. When compared to estimates of Archaean4-6 and Phanerozoic primary production7, these model solutions show that an increasingly more productive biosphere accompanied the broad secular pattern of increasing atmospheric O2 over geologic time8.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Oxigênio/análise , Oxigênio/metabolismo , Enxofre/análise , Enxofre/metabolismo , Atmosfera/química , Dióxido de Carbono/análise , História Antiga , Ontário , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/metabolismo , Pressão Parcial , Fotossíntese , Probabilidade , Sulfatos/análise , Sulfatos/metabolismo , Sulfetos/análise , Sulfetos/metabolismo , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo
11.
Nat Commun ; 9(1): 305, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29335586

RESUMO

The original version of this Article contained an error in the barite saturation state equation in the fourth paragraph of the Introduction and incorrectly read 'Ωbarite=({134Ba2+}⋅{SO42-})/Ksp)'. The correct version removes the superscript 134 next to 'Ba2+'. This error has now been corrected in both the PDF and HTML versions of the Article.

12.
Emerg Top Life Sci ; 2(2): 149-159, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32412619

RESUMO

The oxygenation of the atmosphere - one of the most fundamental transformations in Earth's history - dramatically altered the chemical composition of the oceans and provides a compelling example of how life can reshape planetary surface environments. Furthermore, it is commonly proposed that surface oxygen levels played a key role in controlling the timing and tempo of the origin and early diversification of animals. Although oxygen levels were likely more dynamic than previously imagined, we make a case here that emerging records provide evidence for low atmospheric oxygen levels for the majority of Earth's history. Specifically, we review records and present a conceptual framework that suggest that background oxygen levels were below 1% of the present atmospheric level during the billon years leading up to the diversification of early animals. Evidence for low background oxygen levels through much of the Proterozoic bolsters the case that environmental conditions were a critical factor in controlling the structure of ecosystems through Earth's history.

13.
Nat Commun ; 8(1): 1342, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29109481

RESUMO

Geochemical analyses of sedimentary barites (barium sulfates) in the geological record have yielded fundamental insights into the chemistry of the Archean environment and evolutionary origin of microbial metabolisms. However, the question of how barites were able to precipitate from a contemporary ocean that contained only trace amounts of sulfate remains controversial. Here we report dissolved and particulate multi-element and barium-isotopic data from Lake Superior that evidence pelagic barite precipitation at micromolar ambient sulfate. These pelagic barites likely precipitate within particle-associated microenvironments supplied with additional barium and sulfate ions derived from heterotrophic remineralization of organic matter. If active during the Archean, pelagic precipitation and subsequent sedimentation may account for the genesis of enigmatic barite deposits. Indeed, barium-isotopic analyses of barites from the Paleoarchean Dresser Formation are consistent with a pelagic mechanism of precipitation, which altogether offers a new paradigm for interpreting the temporal occurrence of barites in the geological record.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...