Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29574290

RESUMO

The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids.


Assuntos
Membrana Celular/química , Cromatografia Gasosa/métodos , Ácidos Graxos/análise , Staphylococcus aureus , Esterificação , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Staphylococcus aureus/química , Staphylococcus aureus/citologia
2.
PLoS One ; 11(12): e0167844, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936120

RESUMO

Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32-34°C and 20-30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as "faux" sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32-34°C and 20-30% RH posed a potentially significant source of amino acid loss.


Assuntos
Aminoácidos/metabolismo , Exercício Físico , Temperatura Alta , Suor/metabolismo , Aminoácidos/sangue , Humanos , Masculino , Pele/metabolismo
3.
PLoS One ; 11(7): e0159662, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442022

RESUMO

Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35-37°C, and additional 0-5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis.


Assuntos
Aminoácidos/metabolismo , Citoplasma/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Ferimentos e Lesões/microbiologia , Humanos , Análise de Componente Principal , Padrões de Referência , Proteínas Ribossômicas/metabolismo , Ferimentos e Lesões/patologia
4.
PLoS One ; 9(4): e92296, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714666

RESUMO

Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in environmental conditions on growth characteristics, cell size and membrane fatty acid composition in S. lugdunensis. Liquid broth cultures of S. lugdunensis were grown under varying combinations of pH (6-8), temperature (35-39°C) and osmotic pressure (0-5% sodium chloride w/w) to reflect potential ranges of conditions encountered during transition from skin surfaces to invasion of wound sites. The cells were harvested at the mid-exponential phase of growth and assessed for antibiotic minimal inhibitory concentration (MIC), generation time, formation of small colony variants, cell size (by scanning electron microscopy) and membrane fatty acid composition. Stress regimes with elevated NaCl concentrations resulted in significantly higher antibiotic resistance (MIC) and three of the combinations with 5% NaCl had increased generation times (P<0.05). It was found that all ten experimental growth regimes, including the control and centroid cultures, yielded significantly different profiles of plasma membrane fatty acid composition (P<0.0001). Alterations in cell size (P<0.01) were also observed under the range of conditions with the most substantial reduction occurring when cells were grown at 39°C, pH 8 (514±52 nm, mean ± Standard Deviation) compared with cells grown under control conditions at 37°C with pH 7 (702±76 nm, P<0.01). It was concluded that S. lugdunensis responded to slight changes in environmental conditions by altering plasma membrane fatty acid composition, growth rates and morphology to achieve optimal adaptations for survival in changing environments.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ácidos Graxos/metabolismo , Gentamicinas/farmacologia , Staphylococcus lugdunensis/efeitos dos fármacos , Staphylococcus lugdunensis/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Pressão Osmótica , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus lugdunensis/citologia , Temperatura
5.
Nutr J ; 12: 115, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23927677

RESUMO

BACKGROUND: A new dietary supplement, Fatigue Reviva™, has been recently developed to address issues related to amino acid depletion following illness or in conditions of sub-health where altered amino acid homeostasis has been associated with fatigue. Complex formulations of amino acids present significant challenges due to solubility and taste constraints. This initial study sets out to provide an initial appraisal of product palatability and to gather pilot evidence for efficacy. METHODS: Males reporting symptoms of sub-health were recruited on the basis of being free from any significant medical or psychological condition. Each participant took an amino acid based dietary supplement (Fatigue Reviva™) daily for 30 days. Comparisons were then made between pre- and post-supplement general health symptoms and urinary amino acid profiles. RESULTS: Seventeen men took part in the study. Following amino acid supplementation the total Chalder fatigue score improved significantly (mean ± SEM, 12.5 ± 0.9 versus 10.0 ± 1.0, P<0.03). When asked whether they thought that the supplement had improved their health, 65% of participants responded positively. A subgroup of participants reported gastrointestinal symptoms which were attributed to the supplement and which were believed to result from the component fructooligosaccharide. Analysis of urinary amino acids revealed significant alterations in the relative abundances of a number of amino acids after supplementation including an increase in valine, isoleucine and glutamic acid and reduced levels of glutamine and ornithine. Discriminant function analysis of the urinary amino acid data revealed significant differences between the pre- and post-supplement urine excretion profiles. CONCLUSIONS: The results indicated that Fatigue Reviva™ was palatable and that 65% of the study group reported that they felt the product had improved their health. The product could provide an effective tool for the management of unexplained fatigue and symptoms of sub-health. Further product development may yield additional options for those patients susceptible to fructooligosaccharide.


Assuntos
Aminoácidos/administração & dosagem , Suplementos Nutricionais , Fadiga/tratamento farmacológico , Adulto , Idoso , Aminoácidos/urina , Índice de Massa Corporal , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...