Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(12): 6762-6772, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36922736

RESUMO

Electrochemical transformation of CO2 into energy-dense liquid fuels provides a viable solution to challenges regarding climate change and nonrenewable resource dependence. Here, we report on the modification of a Cr-Ga oxide electrocatalyst through the introduction of nickel to generate a catalyst that generates 1-butanol at unprecedented faradaic efficiencies (ξ = 42%). This faradaic efficiency occurs at -1.48 V vs Ag/AgCl, with 1-butanol production commencing at an overpotential of 320 mV. At this potential, minor products include formate, methanol, acetic acid, acetone, and 3-hydroxybutanal. At -1.0 and -1.4 V, 3-hydroxybutanal becomes the primary product. This is in contrast to the nickel-free (Cr2O3)3(Ga2O3) system, where neither 3-hydroxybutanal nor 1-butanol was detected. Mechanistic studies show that formate is the initial CO2 reduction product and identify acetaldehyde as the key intermediate. Nickel is found responsible for the coupling and reduction of acetaldehyde to generate the higher molecular weight carbon products observed. To the best of our knowledge, this is the first electrocatalyst to generate 1-butanol with high faradaic efficiency.

2.
Inorg Chem ; 59(7): 4835-4841, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193928

RESUMO

As atmospheric levels of carbon dioxide (CO2) continue to increase, there is an immediate need to balance the carbon cycle. Current approaches require multiple processes to fix CO2 from the atmosphere or flue gas and then reduce it to value-added products. The zinc(II) catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) reduces CO2 from air to formate with a faradaic efficiency of 15.1% based on total charge. The catalyst utilizes metal-ligand cooperativity and redox-active ligands to fix, activate, and reduce CO2. This approach provides a new strategy that incorporates sustainable earth-abundant metals that are oxygen and water tolerant.

3.
Inorg Chem ; 58(19): 12986-12997, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31503487

RESUMO

The zinc(II) complex of diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazonepyridine), ZnL1 (1), was prepared and evaluated as a precatalyst for the hydrogen evolution reaction (HER) under homogeneous conditions in acetonitrile. Complex 1 is protonated on the noncoordinating nitrogen of the hydrazonepyridine moiety to yield the active catalyst Zn(HL1)OAc (2) upon addition of acetic acid. Addition of methyl iodide to 1 yields the corresponding methylated derivative ZnL2I (3). In solution, partial dissociation of the coordinated iodide yields the cationic derivative 3'. Complexes 1-3 were characterized by 1H NMR, FT-IR, and UV-visible spectroscopies. The solid-state structures of 2 and 3 were determined by single crystal X-ray diffraction. HER studies conducted in acetonitrile with acetic acid as the proton source yield a turnover frequency (TOF) of 7700 s-1 for solutions of 1 at an overpotential of 1.27 V and a TOF of 6700 s-1 for solutions of 3 at an overpotential of 0.56 V. For both complexes, the required potential for catalysis, Ecat/2, is larger than the thermodynamic reduction potential, E1/2, indicative of a kinetic barrier attributed to intramolecular proton rearrangement. The effect is larger for solutions of 1 (+440 mV) than for solutions of 3 (+160 mV). Controlled potential coulometry studies were used to determine faradaic efficiencies of 71 and 89% for solutions of 1 and 3, respectively. For both catalysts, extensive cycling of potential under catalytic conditions results in the deposition of a film on the glassy carbon electrode surface that is active as an HER catalyst. Analysis of the film of 3 by X-ray photoelectron spectroscopy indicates the complex remains intact upon deposition. A proposed ligand-centered HER mechanism with 1 as a precatalyst to 2 is supported computationally using density functional theory (DFT). All catalytic intermediates in the mechanism were structurally and energetically characterized with the DFT/B3LYP/6-311g(d,p) in solution phase using a polarizable continuum model (PCM). The thermodynamic feasibility of the mechanism is supported by calculation of equilibrium constants or reduction potentials for each proposed step.

4.
Inorg Chem ; 56(18): 11254-11265, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28857556

RESUMO

In this study, we report the electrocatalytic behavior of the neutral, monomeric Cu(II) complex of diacetyl-bis(N-4-methyl-3-thiosemicarbazonato), CuL1, for metal-assisted ligand-centered hydrogen evolution in acetonitrile and dimethylformamide. CuL1 displays a maximum turnover frequency (TOF) of 10 000 s-1 in acetonitrile and 5100 s-1 in dimethylformamide at an overpotential of 0.80 and 0.76 V, respectively. The rate law is first-order in catalyst and second-order in proton concentration. Gas analysis from controlled potential electrolysis confirms CuL1 as an electrocatalyst to produce H2 with a minimum Faradaic efficiency of 81% and turnover numbers as high as 73 while showing no sign of degradation over 23 h. The H2 evolution reaction (HER) was probed using deuterated acid, demonstrating a kinetic isotope effect of 7.54. A proton inventory study suggests one proton is involved in the rate-determining step. Catalytic intermediates were identified using 1H NMR, X-ray photoelectron, and UV-visible spectroscopies. All catalytic intermediates in the proposed mechanism were successfully optimized using density functional theory calculations with the B3LYP functional and the 6-311g(d,p) basis set and support the proposed mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...