Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101187, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327809

RESUMO

Inherited retinal diseases are a leading and untreatable cause of blindness and are therefore candidate diseases for gene therapy. Recombinant vectors derived from adeno-associated virus (rAAV) are currently the most promising vehicles for in vivo therapeutic gene delivery to the retina. However, there is a need for novel AAV-based vectors with greater efficacy for ophthalmic applications, as underscored by recent reports of dose-related inflammatory responses in clinical trials of rAAV-based ocular gene therapies. Improved therapeutic efficacy of vectors would allow for decreases in the dose delivered, with consequent reductions in inflammatory reactions. Here, we describe the development of new rAAV vectors using bioconjugation chemistry to modify the rAAV capsid, thereby improving the therapeutic index. Covalent coupling of a mannose ligand, via the formation of a thiourea bond, to the amino groups of the rAAV capsid significantly increases vector transduction efficiency of both rat and nonhuman primate retinas. These optimized rAAV vectors have important implications for the treatment of a wide range of retinal diseases.

2.
Biomed Pharmacother ; 171: 116148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232661

RESUMO

Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across different animal species, such as rodents, non-human primates, and humans. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy.


Assuntos
Dependovirus , Terapia Genética , Animais , Transdução Genética , Tirosina/genética , Fígado , Retina , Proteínas do Capsídeo/genética , Vetores Genéticos , Técnicas de Transferência de Genes
3.
Mol Ther Methods Clin Dev ; 28: 387-393, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36874242

RESUMO

The subretinal injection protocol for the only approved retinal gene therapy (voretigene neparvovec-rzyl) includes air tamponade at the end of the procedure, but its effects on the subretinal bleb have not been described. In the present study, we evaluated the distribution of enhanced green fluorescent protein (EGFP) after subretinal injection of AAV2 in non-human primates (NHP) without (group A = 3 eyes) or with (group B = 3 eyes) air tamponade. The retinal expression of EGFP was assessed 1 month after subretinal injection with in vivo fundus photographs and fundus autofluorescence. In group A (without air), EGFP expression was limited to the area of the initial subretinal bleb. In group B (with air), EGFP was expressed in a much wider area. These data show that the buoyant force of air on the retina causes a wide subretinal diffusion of vector, away from the injection site. In the present paper, we discuss the beneficial and deleterious clinical effects of this finding. Whereas subretinal injection is likely to become more common with the coming of new gene therapies, the effects of air tamponade should be explored further to improve efficacy, reproducibility, and safety of the protocol.

4.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884622

RESUMO

Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of 'bedside-back-to-bench' studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Doenças Retinianas/terapia , Transdução Genética , Animais , Humanos , Doenças Retinianas/genética , Doenças Retinianas/imunologia
5.
Med Sci (Paris) ; 36(6-7): 607-615, 2020.
Artigo em Francês | MEDLINE | ID: mdl-32614312

RESUMO

Retinitis pigmentosa is the most common blinding inherited retinal dystrophy. Gene therapy is a burgeoning revolutionary approach that paves the way to treatment of previously incurable diseases. At the end of 2017 and 2018, a gene therapy, Luxturna®, obtained a marketing authorization by respectively the FDA (Food and Drug Administration) and the EMA (European Medicines Agency). This treatment, with proven efficacy, is available to patients with Leber congenital amaurosis and retinitis pigmentosa associated with bi-allelic mutations of the RPE 65 gene. In this paper, we present the current advances in gene therapy for retinitis pigmentosa and discuss the technological, economic and ethical challenges to overcome for gene therapy to improve medical practices.


TITLE: La thérapie génique des rétinites pigmentaires héréditaires. ABSTRACT: Les rétinites pigmentaires, ou dystrophies rétiniennes héréditaires, sont des maladies dégénératives cécitantes d'origine génétique. La thérapie génique est une approche révolutionnaire en plein essor qui ouvre la voie au traitement de maladies jusqu'ici incurables. Une thérapie génique, le Luxturna®, a obtenu une autorisation de mise sur le marché par la FDA (Food and Drug Administration) fin 2017 et l'EMA (European Medicines Agency) fin 2018. Ce traitement, à l'efficacité démontrée, destiné aux patients porteurs d'une amaurose congénitale de Leber ou d'une rétinopathie pigmentaire en lien avec une mutation bi-allélique du gène RPE65, apporte beaucoup plus de questions que de réponses. Nous présentons, dans cette revue, les avancées actuelles, puis les défis technologiques, économiques et éthiques à surmonter pour que la thérapie génique améliore nos pratiques médicales.


Assuntos
Terapia Genética , Retinose Pigmentar/terapia , Estudos de Associação Genética , Terapia Genética/economia , Terapia Genética/ética , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Mutação , Padrões de Prática Médica/normas , Padrões de Prática Médica/tendências , Melhoria de Qualidade , Retinose Pigmentar/genética
6.
Hum Gene Ther ; 28(2): 154-167, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27750461

RESUMO

Within the next decade, we will see many gene therapy clinical trials for eye diseases, which may lead to treatments for thousands of visually impaired people around the world. To target retinal diseases that affect specific cell types, several recombinant adeno-associated virus (AAV) serotypes have been generated and used successfully in preclinical mouse studies. Because there are numerous anatomic and physiologic differences between the eyes of mice and "men" and because surgical delivery approaches and immunologic responses also differ between these species, this study evaluated the transduction characteristics of two promising new serotypes, AAV7m8 and AAV8BP2, in the retinas of animals that are most similar to those of humans: non-human primates (NHPs). We report that while AAV7m8 efficiently targets a variety of cell types by subretinal injection in NHPs, transduction after intravitreal delivery was mostly restricted to the inner retina at lower doses that did not induce an immune response. AAV8BP2 targets the cone photoreceptors efficiently but bipolar cells inefficiently by subretinal injection. Additionally, transduction by both serotypes in the anterior chamber of the eye and the optic pathway of the brain was observed post-intravitreal delivery. Finally, we assessed immunogenicity, keeping in mind that these AAV capsids may be used in future clinical trials. We found that AAV8BP2 had a better safety profile compared with AAV7m8, even at the highest doses administered. These studies underscore the differences in AAV transduction between mice and primates, highlighting the importance of careful evaluation of therapeutic vectors in NHPs prior to moving to clinical trials.


Assuntos
Dependovirus/classificação , Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Retina/metabolismo , Degeneração Retiniana/terapia , Animais , Humanos , Primatas , Retina/citologia , Degeneração Retiniana/genética
7.
EMBO Mol Med ; 6(9): 1175-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25092770

RESUMO

In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (~100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use.


Assuntos
Dependovirus/genética , Células Bipolares da Retina/virologia , Transdução Genética/métodos , Animais , Vetores Genéticos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas
8.
Hum Mol Genet ; 21(10): 2298-311, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22343139

RESUMO

The rod-derived cone viability factors, RdCVF and RdCVF2, have potential therapeutical interests for the treatment of inherited photoreceptor degenerations. In the mouse lacking Nxnl2, the gene encoding RdCVF2, the progressive decline of the visual performance of the cones in parallel with their degeneration, arises due to the loss of trophic support from RdCVF2. In contrary, the progressive loss of rod visual function of the Nxnl2-/- mouse results from a decrease in outer segment length, mediated by a cell autonomous mechanism involving the putative thioredoxin protein RdCVF2L, the second spliced product of the Nxnl2 gene. This novel signaling mechanism extends to olfaction as shown by the progressive impairment of olfaction in aged Nxnl2-/- mice and the protection of olfactory neurons by RdCVF2. This study shows that Nxnl2 is a bi-functional gene involved in the maintenance of both the function and the viability of sensory neurons.


Assuntos
Sobrevivência Celular/genética , Proteínas do Olho/genética , Splicing de RNA , Células Receptoras Sensoriais/citologia , Tiorredoxinas/genética , Animais , Células Cultivadas , Proteínas do Olho/metabolismo , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Receptoras Sensoriais/metabolismo , Tiorredoxinas/metabolismo
9.
Pharmaceuticals (Basel) ; 5(5): 447-59, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24281556

RESUMO

Sub-retinal injection of the common AAV2 pseudotypes frequently results in strong transduction of the retinal pigment epithelium (RPE) as well as the retina itself. This has been of benefit to date in human clinical trials using AAV, where the disease target is in the RPE. However, many mutations predisposing to retinal disease are located in the photoreceptor cells, present in the neural retina and not the RPE; in this case the sub-retinal injection route may cause an effective "loss" of therapeutic AAV to the RPE. The avß5 integrin receptor is highly expressed on the apical surface of the RPE, and is essential to the daily phagocytosis of the outer segment tips of photoreceptor cells. The transduction efficiency of AAV was tested in the retinas of ß5-/- mice lacking this receptor and showing defects in photoreceptor outer segment phagocytosis. Following sub-retinal injection of AAV2/5-eGFP, fluorescence was found to be stronger and more widespread in the neural retina of ß5-/- mice compared to wild-types with greatly reduced fluorescence in the RPE. Increased levels of the phagocytic signalling protein MFG-E8, the ligand for the avß5 integrin receptor, is found to have a moderate inhibitory effect on AAV transduction of the retina. However the opposite effect is found when only the integrin-binding domain of MFG-E8, the RGD (Arginine-Glycine-Aspartic acid) domain, was increased. In this case RGD enhanced AAV-mediated retinal transduction relative to RPE transduction. These results are presented for their relevance for the design of AAV-based retinal gene therapy strategies strategies targeting retinal/photoreceptor cells.

11.
Methods Mol Biol ; 807: 179-218, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22034031

RESUMO

Retinal gene therapy holds great promise for the treatment of inherited and noninherited blinding diseases such as retinitis pigmentosa and age-related macular degeneration. The most widely used vectors for ocular gene delivery are based on adeno-associated virus (AAV) because it mediates long-term transgene expression in a variety of retinal cell types and elicits minimal immune responses. Inherited retinal diseases are nonlethal and have a wide level of genetic heterogeneity. Many of the genes have now been identified and their function elucidated, providing a major step towards the development of gene-based treatments. Extensive preclinical evaluation of gene transfer strategies in small and large animal models is key to the development of successful gene-based therapies for the retina. These preclinical studies have already allowed the field to reach the point where gene therapy to treat inherited blindness has been brought to clinical trial.In this chapter, we focus on AAV-mediated specific gene therapy for inherited retinal degenerative diseases, describing the disease targets, the preclinical studies in animal models and the recent success of the LCA-RPE65 clinical trials.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Degeneração Macular/terapia , Animais , Humanos , Degeneração Macular/genética
13.
Hum Gene Ther ; 22(5): 587-93, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21142470

RESUMO

Gene therapy studies in primates can provide important information regarding vector tropism, specific cellular expression, biodistribution, and safety prior to clinical trials. In this study, we report the assessment of transduction efficiency of recombinant adeno-associated virus (rAAV) vectors using human postmortem retina. Transductions were performed using two in vitro models prepared from human tissue: dissociated cell cultures and retinal explants. These models were used to assess cellular tropism and selectivity of rAAV vectors encoding for fluorescent proteins under the control of different promoters. These promoters were a ubiquitous cytomegalovirus promoter and a cell type-specific promoter targeting expression in ON bipolar cells. The results demonstrate that this in vitro approach can limit the use of living primates for the validation of gene therapy in vision and ophthalmology.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Oftalmologia/métodos , Retina/citologia , Doenças Retinianas/terapia , Transdução Genética/métodos , Células Cultivadas , Dependovirus , Fluorescência , Vetores Genéticos/administração & dosagem , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Regiões Promotoras Genéticas/genética , Doenças Retinianas/genética
14.
Mol Cell Proteomics ; 8(6): 1206-18, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19279044

RESUMO

Rod-derived cone viability factor (RdCVF) is produced by the Nxnl1 gene that codes for a second polypeptide, RdCVFL, by alternative splicing. Although the role of RdCVF in promoting cone survival has been described, the implication of RdCVFL, a putative thioredoxin enzyme, in the protection of photoreceptors is presently unknown. Using a proteomics approach we identified 90 proteins interacting with RdCVFL including the microtubule-binding protein TAU. We demonstrate that the level of phosphorylation of TAU is increased in the retina of the Nxnl1(-/-) mice as it is hyperphosphorylated in the brain of patients suffering from Alzheimer disease, presumably in some cases through oxidative stress. Using a cell-based assay, we show that RdCVFL inhibits TAU phosphorylation. In vitro, RdCVFL protects TAU from oxidative damage. Photooxidative stress is implicated in retinal degeneration, particularly in retinitis pigmentosa, where it is considered to be a contributor to secondary cone death. The functional interaction between RdCVFL and TAU described here is the first characterization of the RdCVFL signaling pathway involved in neuronal cell death mediated by oxidative stress.


Assuntos
Proteínas do Olho/metabolismo , Retina/metabolismo , Tiorredoxinas/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Proteínas do Olho/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estresse Oxidativo , Fosforilação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem , Tiorredoxinas/genética
15.
Vision Res ; 48(3): 386-91, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17920651

RESUMO

Mutational heterogeneity in genes causative of dominantly inherited disorders represents a significant barrier for development of therapies directed towards correction of the primary genetic defect. To circumvent the mutational heterogeneity present in rhodopsin- (RHO-) linked autosomal dominant Retinitis Pigmentosa (adRP), a strategy involving suppression and replacement of RHO has been adopted. RNA interference- (RNAi-) mediated suppression of RHO has been explored as has the generation of an RNAi-resistant replacement gene using the degeneracy of the genetic code. Additionally, the functional equivalence of codon-modified replacement genes has been demonstrated in a transgenic animal (RHO-M). Suppression and replacement, while exemplified by adRP, may also be relevant to many other dominantly inherited diseases with the hallmark of mutational heterogeneity.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Retinose Pigmentar/terapia , Rodopsina/genética , Animais , Células Cultivadas , Eletrorretinografia , Expressão Gênica , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/biossíntese
16.
Am J Hum Genet ; 81(1): 127-35, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17564969

RESUMO

Mutational heterogeneity represents a significant barrier to development of therapies for many dominantly inherited diseases. For example, >100 mutations in the rhodopsin gene (RHO) have been identified in patients with retinitis pigmentosa (RP). The development of therapies for dominant disorders that correct the primary genetic lesion and overcome mutational heterogeneity is challenging. Hence, therapeutics comprising two elements--gene suppression in conjunction with gene replacement--have been investigated. Suppression is targeted to a site independent of the mutation; therefore, both mutant and wild-type alleles are suppressed. In parallel with suppression, a codon-modified replacement gene refractory to suppression is provided. Both in vitro and in vivo validation of suppression and replacement for RHO-linked RP has been undertaken in the current study. RNA interference (RNAi) has been used to achieve ~90% in vivo suppression of RHO in photoreceptors, with use of adeno-associated virus (AAV) for delivery. Demonstration that codon-modifed RHO genes express functional wild-type protein has been explored transgenically, together with in vivo expression of AAV-delivered RHO-replacement genes in the presence of targeting RNAi molecules. Observation of potential therapeutic benefit from AAV-delivered suppression and replacement therapies has been obtained in Pro23His mice. Results provide the first in vivo indication that suppression and replacement can provide a therapeutic solution for dominantly inherited disorders such as RHO-linked RP and can be employed to circumvent mutational heterogeneity.


Assuntos
Terapia Genética/métodos , Interferência de RNA , Retinose Pigmentar/terapia , Rodopsina/genética , Supressão Genética , Adenoviridae/genética , Animais , Sequência de Bases , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , RNA Interferente Pequeno/genética , Retina/química , Retina/metabolismo , Retina/patologia , Retinose Pigmentar/patologia , Rodopsina/análise
17.
Curr Gene Ther ; 7(2): 121-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17430131

RESUMO

Extracellular signaling molecules have been implicated in the progression of Retinal Degeneration (RD). Gene regulatory events linked to the maintenance of retinal structure and function incorporate signaling cascades that may serve as therapeutic targets for some forms of blindness. This review shall focus on the evidence for non-cell-autonomous mechanisms that affect the pattern of degeneration seen in retinal dystrophies, the types of signals that may influence the course of degeneration and finally with the related prospects for retinal-therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Degeneração Retiniana/etiologia , Degeneração Retiniana/terapia , Transdução de Sinais , Animais , Terapia Genética , Humanos , Oxirredução , Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...