Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34501574

RESUMO

Harmonized language is critical for helping researchers to find data, collecting scientific data to facilitate comparison, and performing pooled and meta-analyses. Using standard terms to link data to knowledge systems facilitates knowledge-driven analysis, allows for the use of biomedical knowledge bases for scientific interpretation and hypothesis generation, and increasingly supports artificial intelligence (AI) and machine learning. Due to the breadth of environmental health sciences (EHS) research and the continuous evolution in scientific methods, the gaps in standard terminologies, vocabularies, ontologies, and related tools hamper the capabilities to address large-scale, complex EHS research questions that require the integration of disparate data and knowledge sources. The results of prior workshops to advance a harmonized environmental health language demonstrate that future efforts should be sustained and grounded in scientific need. We describe a community initiative whose mission was to advance integrative environmental health sciences research via the development and adoption of a harmonized language. The products, outcomes, and recommendations developed and endorsed by this community are expected to enhance data collection and management efforts for NIEHS and the EHS community, making data more findable and interoperable. This initiative will provide a community of practice space to exchange information and expertise, be a coordination hub for identifying and prioritizing activities, and a collaboration platform for the development and adoption of semantic solutions. We encourage anyone interested in advancing this mission to engage in this community.


Assuntos
Inteligência Artificial , Idioma , Saúde Ambiental , Bases de Conhecimento , National Institute of Environmental Health Sciences (U.S.) , Estados Unidos
2.
Environ Health Perspect ; 129(4): 47012, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33877857

RESUMO

BACKGROUND: Exposure to toxic metals (TMs) such as lead can cause lifelong neurodevelopmental impairment and other adverse outcomes. TMs enter drinking water from human activity, geogenic contamination, and corrosion of water system components. Several studies report TM contamination in piped systems and private wells in high-income countries (HICs). However, few robust studies report on TM contamination in low- and middle-income countries (LMICs). OBJECTIVES: We characterized the occurrence and investigated sources of TM contamination in 261 rural water systems in three West African LMICs to inform prevention and management. METHODS: Water samples were collected from 261 community water systems (handpumps and public taps) across rural Ghana, Mali, and Niger. Scrapings were collected from accessible components of a subset of these systems using a drill with acid-washed diamond-tipped bits. Samples were analyzed by inductively coupled plasma (ICP) mass spectrometry or ICP optical emission spectroscopy. RESULTS: Of the TMs studied, lead most frequently occurred at levels of concern in sampled water system components and water samples. Lead mass fractions exceeded International Plumbing Code (IPC) recommended limits (0.25% wt/wt) for components in 82% (107/130) of systems tested; brass components proved most problematic, with 72% (26/36) exceeding IPC limits. Presence of a brass component in a water system increased expected lead concentrations in drinking-water samples by 3.8 times. Overall, lead exceeded World Health Organization (WHO) guideline values in 9% (24/261) of drinking-water samples across countries; these results are broadly comparable to results observed in many HICs. Results did not vary significantly by geography or system type. DISCUSSION: Ensuring use of lead-free (<0.25%) components in new water systems and progressively remediating existing systems could reduce drinking-water lead exposures and improve health outcomes for millions. However, reflexive decommissioning of existing systems may deprive users of sufficient water for health or drive them to riskier sources. Because supply chains for many water system components are global, TM monitoring, prevention, and management may be warranted in other LMICs beyond the study area as well. https://doi.org/10.1289/EHP7804.


Assuntos
Água Potável , Poluentes Químicos da Água , Água Potável/análise , Humanos , Chumbo/análise , Engenharia Sanitária , Poluentes Químicos da Água/análise , Abastecimento de Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-27563916

RESUMO

Information and communications technologies (ICTs) such as mobile survey tools (MSTs) can facilitate field-level data collection to drive improvements in national and international development programs. MSTs allow users to gather and transmit field data in real time, standardize data storage and management, automate routine analyses, and visualize data. Dozens of diverse MST options are available, and users may struggle to select suitable options. We developed a systematic MST Evaluation Framework (EF), based on International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) software quality modeling standards, to objectively assess MSTs and assist program implementers in identifying suitable MST options. The EF is applicable to MSTs for a broad variety of applications. We also conducted an MST user survey to elucidate needs and priorities of current MST users. Finally, the EF was used to assess seven MSTs currently used for water and sanitation monitoring, as a validation exercise. The results suggest that the EF is a promising method for evaluating MSTs.


Assuntos
Coleta de Dados/instrumentação , Coleta de Dados/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Saneamento , Poluentes da Água/análise , Humanos , População Rural , Inquéritos e Questionários
4.
Water Resour Res ; 51(10): 8431-8449, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27667863

RESUMO

Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...