Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 705-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803110

RESUMO

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Pseudotsuga , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Pseudotsuga/genética , Pseudotsuga/microbiologia , Pseudotsuga/fisiologia , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Árvores/genética , Adaptação Fisiológica/genética , Herança Multifatorial , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Mol Ecol Resour ; 23(8): 1880-1904, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602732

RESUMO

Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information-especially sequence information that includes intraspecific variation-creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial 'barcode' regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.


Assuntos
DNA Ambiental , Humanos , Animais , Biodiversidade , Genômica/métodos , Peixes/genética , Genoma , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos
3.
Am J Bot ; 109(10): 1622-1640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36098061

RESUMO

PREMISE: Reconciling the use of taxonomy to partition morphological variation and describe genetic divergence within and among closely related species is a persistent challenge in phylogenetics. We reconstructed phylogenetic relationships among Cedrela odorata (Meliaceae) and five closely allied species to test the genetic basis for the current model of species delimitation in this economically valuable and threatened genus. METHODS: We prepared a nuclear species tree with the program SNPhylo and 16,000 single-nucleotide polymorphisms from 168 Cedrela specimens. Based on clades present and ancestral patterns ADMIXTURE, we designed nine species delimitation models and compared each model to current taxonomy with Bayes factor delimitation. Timing of major lineage divergences was estimated with the program SNAPP. RESULTS: The resulting analysis revealed that modern C. odorata evolved from two genetically distinct ancestral sources. All species delimitation models tested better fit the data than the model representing current taxonomic delimitation. Models with the greatest marginal likelihoods separated Mesoamerican C. odorata and South American C. odorata into two species and lumped C. angustifolia and C. montana as a single species. We estimated that Cedrela diversified in South America within the last 19 million years following one or more dispersal events from Mesoamerican lineages. CONCLUSIONS: Our analyses show that the present taxonomic understanding within the genus obscures divergent lineages in C. odorata due in part to morphological differentiation and taxonomic distinctions that are not predictably associated with genetic divergence. A more accurate application of taxonomy to C. odorata and related species may aid in its conservation, management, and restoration efforts.


Assuntos
Cedrela , Cedrela/genética , Cedrela/anatomia & histologia , Filogenia , Teorema de Bayes , Especificidade da Espécie , América do Sul
4.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534296

RESUMO

The plastid genomes of photosynthetic green plants have largely maintained conserved gene content and order as well as structure over hundreds of millions of years of evolution. Several plant lineages, however, have departed from this conservation and contain many plastome structural rearrangements, which have been associated with an abundance of repeated sequences both overall and near rearrangement endpoints. We sequenced the plastomes of 25 taxa of Astragalus L. (Fabaceae), a large genus in the inverted repeat-lacking clade of legumes, to gain a greater understanding of the connection between repeats and plastome inversions. We found plastome repeat structure has a strong phylogenetic signal among these closely related taxa mostly in the New World clade of Astragalus called Neo-Astragalus. Taxa without inversions also do not differ substantially in their overall repeat structure from four taxa each with one large-scale inversion. For two taxa with inversion endpoints between the same pairs of genes, differences in their exact endpoints indicate the inversions occurred independently. Our proposed mechanism for inversion formation suggests the short inverted repeats now found near the endpoints of the four inversions may be there as a result of these inversions rather than their cause. The longer inverted repeats now near endpoints may have allowed the inversions first mediated by shorter microhomologous sequences to propagate, something that should be considered in explaining how any plastome rearrangement becomes fixed regardless of the mechanism of initial formation.


Assuntos
Fabaceae , Genomas de Plastídeos , Sequência de Bases , Evolução Molecular , Fabaceae/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico
5.
Mol Ecol ; 30(20): 4970-4990, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33594756

RESUMO

Genetic diversity underpins species conservation and management goals, and ultimately determines a species' ability to adapt. Using freshwater environmental DNA (eDNA) samples, we examined mitochondrial genetic diversity using multigene metabarcode sequence data from four Oncorhynchus species across 16 sites in Oregon and northern California. Our multigene metabarcode panel included targets commonly used in population genetic NADH dehydrogenase 2 (ND2), phylogenetic cytochrome c oxidase subunit 1 (COI) and eDNA (12S ribosomal DNA) screening. The ND2 locus showed the greatest within-species haplotype diversity for all species, followed by COI and then 12S rDNA for all species except Oncorhynchus kisutch. Sequences recovered for O. clarkii clarkii were either identical to, or one mutation different from, previously characterized haplotypes (95.3% and 4.5% of reads, respectively). The greatest diversity in O. c. clarkii was among coastal watersheds, and subsets of this diversity were shared with fish in inland watersheds. However, coastal streams and the Umpqua River watershed appear to harbour unique haplotypes. Sequences from O. mykiss revealed a disjunction between the Willamette watershed and southern watersheds suggesting divergent histories. We also identified similarities between populations in the northern Deschutes and southern Klamath watersheds, consistent with previously hypothesized connections between the two via inland basins. Oncorhynchus kisutch was only identified in coastal streams and the Klamath River watershed, with most diversity concentrated in the coastal Coquille watershed. Oncorhynchus tshawytscha was only observed at one site, but contained multiple haplotypes at each locus. The characterization of genetic diversity at multiple loci expands the knowledge gained from eDNA sampling and provides crucial information for conservation actions and genetic management.


Assuntos
DNA Ambiental/análise , Oncorhynchus , Animais , California , Código de Barras de DNA Taxonômico , Variação Genética , Oncorhynchus/genética , Oregon , Filogenia , Salmão/genética , Truta/genética
6.
BMC Genomics ; 21(1): 9, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900111

RESUMO

BACKGROUND: In forest trees, genetic markers have been used to understand the genetic architecture of natural populations, identify quantitative trait loci, infer gene function, and enhance tree breeding. Recently, new, efficient technologies for genotyping thousands to millions of single nucleotide polymorphisms (SNPs) have finally made large-scale use of genetic markers widely available. These methods will be exceedingly valuable for improving tree breeding and understanding the ecological genetics of Douglas-fir, one of the most economically and ecologically important trees in the world. RESULTS: We designed SNP assays for 55,766 potential SNPs that were discovered from previous transcriptome sequencing projects. We tested the array on ~ 2300 related and unrelated coastal Douglas-fir trees (Pseudotsuga menziesii var. menziesii) from Oregon and Washington, and 13 trees of interior Douglas-fir (P. menziesii var. glauca). As many as ~ 28 K SNPs were reliably genotyped and polymorphic, depending on the selected SNP call rate. To increase the number of SNPs and improve genome coverage, we developed protocols to 'rescue' SNPs that did not pass the default Affymetrix quality control criteria (e.g., 97% SNP call rate). Lowering the SNP call rate threshold from 97 to 60% increased the number of successful SNPs from 20,669 to 28,094. We used a subset of 395 unrelated trees to calculate SNP population genetic statistics for coastal Douglas-fir. Over a range of call rate thresholds (97 to 60%), the median call rate for SNPs in Hardy-Weinberg equilibrium ranged from 99.2 to 99.7%, and the median minor allele frequency ranged from 0.198 to 0.233. The successful SNPs also worked well on interior Douglas-fir. CONCLUSIONS: Based on the original transcriptome assemblies and comparisons to version 1.0 of the Douglas-fir reference genome, we conclude that these SNPs can be used to genotype about 10 K to 15 K loci. The Axiom genotyping array will serve as an excellent foundation for studying the population genomics of Douglas-fir and for implementing genomic selection. We are currently using the array to construct a linkage map and test genomic selection in a three-generation breeding program for coastal Douglas-fir.


Assuntos
Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Pseudotsuga/genética , Árvores/genética , Adaptação Fisiológica/genética , Cruzamento , Florestas , Genótipo , Técnicas de Genotipagem , Humanos , Oregon , Washington
7.
PeerJ ; 7: e7649, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579586

RESUMO

Milkweeds (Asclepias) are used in wide-ranging studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification. We present a transcriptome and draft nuclear genome assembly of the common milkweed, Asclepias syriaca. This reconstruction of the nuclear genome is augmented by linkage group information, adding to existing chloroplast and mitochondrial genomic resources for this member of the Apocynaceae subfamily Asclepiadoideae. The genome was sequenced to 80.4× depth and the draft assembly contains 54,266 scaffolds ≥1 kbp, with N50 = 3,415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated. A large proportion of gene space is represented in the assembly, with 96.7% of Asclepias transcripts, 88.4% of transcripts from the related genus Calotropis, and 90.6% of proteins from Coffea mapping to the assembly. Scaffolds covering 75 Mbp of the Asclepias assembly formed 11 linkage groups. Comparisons of these groups with pseudochromosomes in Coffea found that six chromosomes show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. The progesterone 5ß-reductase gene family, a key component of cardenolide production, is likely reduced in Asclepias relative to other Apocynaceae. The genome and transcriptome of common milkweed provide a rich resource for future studies of the ecology and evolution of a charismatic plant family.

8.
BMC Genomics ; 20(1): 58, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658593

RESUMO

BACKGROUND: Tree species in the genus Cedrela P. Browne are threatened by timber overexploitation across the Neotropics. Genetic identification of processed timber can be used to supplement wood anatomy to assist in the taxonomic and source validation of protected species and populations of Cedrela. However, few genetic resources exist that enable both species and source identification of Cedrela timber products. We developed several 'omic resources including a leaf transcriptome, organelle genome (cpDNA), and diagnostic single nucleotide polymorphisms (SNPs) that may assist the classification of Cedrela specimens to species and geographic origin and enable future research on this widespread Neotropical tree genus. RESULTS: We designed hybridization capture probes to enrich for thousands of genes from both freshly preserved leaf tissue and from herbarium specimens across eight Meliaceae species. We first assembled a draft de novo transcriptome for C. odorata, and then identified putatively low-copy genes. Hybridization probes for 10,001 transcript models successfully enriched 9795 (98%) of these targets, and analysis of target capture efficiency showed that probes worked effectively for five Cedrela species, with each species showing similar mean on-target sequence yield and depth. The probes showed greater enrichment efficiency for Cedrela species relative to the other three distantly related Meliaceae species. We provide a set of candidate SNPs for species identification of four of the Cedrela species included in this analysis, and present draft chloroplast genomes for multiple individuals of eight species from four genera in the Meliaceae. CONCLUSIONS: Deforestation and illegal logging threaten forest biodiversity globally, and wood screening tools offer enforcement agencies new approaches to identify illegally harvested timber. The genomic resources described here provide the foundation required to develop genetic screening methods for Cedrela species identification and source validation. Due to their transferability across the genus and family as well as demonstrated applicability for both fresh leaves and herbarium specimens, the genomic resources described here provide additional tools for studies examining the ecology and evolutionary history of Cedrela and related species in the Meliaceae.


Assuntos
Cedrela/genética , Perfilação da Expressão Gênica/métodos , Genoma de Cloroplastos/genética , Genômica/métodos , Árvores/genética , Região do Caribe , Cedrela/classificação , América Central , Geografia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Meliaceae/classificação , Meliaceae/genética , Filogenia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , América do Sul , Especificidade da Espécie , Árvores/classificação , Clima Tropical
9.
New Phytol ; 221(4): 2286-2297, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281801

RESUMO

Polyploidy, or whole-genome duplication often with hybridization, is common in eukaryotes and is thought to drive ecological and evolutionary success, especially in plants. The mechanisms of polyploid success in ecologically relevant contexts, however, remain largely unknown. We conducted an extensive test of functional trait divergence and plasticity in conferring polyploid fitness advantage in heterogeneous environments, by growing clonal replicates of a worldwide genotype collection of six allopolyploid and five diploid wild strawberry (Fragaria) taxa in three climatically different common gardens. Among leaf functional traits, we detected divergence in trait means but not plasticities between polyploids and diploids, suggesting that increased genomic redundancy in polyploids does not necessarily translate into greater trait plasticity in response to environmental change. Across the heterogeneous garden environments, however, polyploids exhibited fitness advantage, which was conferred by both trait means and adaptive trait plasticities, supporting a 'jack-and-master' hypothesis for polyploids. Our findings elucidate essential ecological mechanisms underlying polyploid adaptation to heterogeneous environments, and provide an important insight into the prevalence and persistence of polyploid plants.


Assuntos
Adaptação Fisiológica , Fragaria/genética , Poliploidia , Característica Quantitativa Herdável , Diploide , Oregon
10.
Sci Total Environ ; 649: 1157-1170, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308887

RESUMO

Environmental DNA (eDNA) is an emerging biological monitoring tool that can aid in assessing the effects of forestry and forest manufacturing activities on biota. Monitoring taxa across broad spatial and temporal scales is necessary to ensure forest management and forest manufacturing activities meet their environmental goals of maintaining biodiversity. Our objectives are to describe potential applications of eDNA across the wood products supply chain extending from regenerating forests, harvesting, and wood transport, to manufacturing facilities, and to review the current state of the science in this context. To meet our second objective, we summarize the taxa examined with targeted (PCR, qPCR or ddPCR) or metagenomic eDNA methods (eDNA metabarcoding), evaluate how estimated species richness compares between traditional field sampling and eDNA metabarcoding approaches, and compare the geographical representation of prior eDNA studies in freshwater ecosystems to global wood baskets. Potential applications of eDNA include evaluating the effects of forestry and forest manufacturing activities on aquatic biota, delineating fish-bearing versus non fish-bearing reaches, evaluating effectiveness of constructed road crossings for freshwater organism passage, and determining the presence of at-risk species. Studies using targeted eDNA approaches focused on fish, amphibians, and invertebrates, while metagenomic studies focused on fish, invertebrates, and microorganisms. Rare, threatened, or endangered species received the least attention in targeted eDNA research, but are arguably of greatest interest to sustainable forestry and forest manufacturing that seek to preserve freshwater biodiversity. Ultimately, using eDNA methods will enable forestry and forest manufacturing managers to have data-driven prioritization for conservation actions for all freshwater species.


Assuntos
Organismos Aquáticos/química , DNA/análise , Meio Ambiente , Monitoramento Ambiental/métodos , Agricultura Florestal , Hidrobiologia/métodos , Água Doce
11.
BMC Genomics ; 19(1): 896, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526482

RESUMO

BACKGROUND: The application of genomic data and bioinformatics for the identification of restricted or illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of raw and processed materials have implications in sustainable-use commercial practices, and relevance to the enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues, such as wood and wood products. RESULTS: In this paper, we report the success of an alignment-free genome comparison method, [Formula: see text] that differentiates different geographic sources of white oak (Quercus) species with a high level of accuracy with very small amount of genomic data. The method is robust to sequencing errors, different sequencing laboratories and sequencing platforms. CONCLUSIONS: This method offers an approach based on genome-scale data, rather than panels of pre-selected markers for specific taxa. The method provides a generalizable platform for the identification and sourcing of materials using a unified next generation sequencing and analysis framework.


Assuntos
DNA de Plantas/genética , Genoma de Planta , Geografia , Quercus/genética , Alinhamento de Sequência/métodos , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Componente Principal
12.
PLoS One ; 13(10): e0205423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335779

RESUMO

Pinus albicaulis (whitebark pine) is a widely-distributed but rapidly declining high elevation western North American tree and a candidate for listing under the U.S. Endangered Species Act. Our objectives were to develop reliable nuclear microsatellite markers that can be used to assess within-population genetic diversity as well as seed and pollen migration dynamics, and to validate markers using two geographically proximal P. albicaulis populations. We identified 1,667 microsatellite-containing sequences from shotgun DNA libraries of P. albicaulis. Primer pairs were designed for 308 unique microsatellite-containing loci, and these were evaluated for PCR amplification success and segregation in a panel of diploid needle tissue. DNA was extracted with an SDS protocol, and primers were screened through gel electrophoresis. Microsatellites were genotyped through fluorescent primer fragment analysis. Ten novel and 13 transferred loci were found to be reproducible in analyses based on 20 foliage samples from each of two locations: Henderson Mountain, Custer Gallatin National Forest, Montana, and Mt. Washburn, Yellowstone National Park, Wyoming (USA). Transferred loci had higher numbers of alleles and expected heterozygosities than novel loci, but also revealed evidence for a higher frequency of null alleles. Eight of the 13 transferred loci deviated significantly from Hardy-Weinberg Equilibrium, and showed large positive FIS values that were likely inflated by null alleles. Mantel's tests of transferred and novel markers showed no correlation between genetic and geographic distances within or among the two sampled populations. AMOVA suggests that 91% of genetic variability occurs within populations and 9% between the two populations. Studies assessing genetic diversity using these microsatellite loci can help guide future management and restoration activities for P. albicaulis.


Assuntos
Conservação dos Recursos Naturais/métodos , Repetições de Microssatélites , Pinus/genética , Núcleo Celular/genética , Primers do DNA/genética , Espécies em Perigo de Extinção , Ligação Genética , Genética Populacional , Pinus/fisiologia , Pólen/genética , Pólen/fisiologia , Dinâmica Populacional , Sementes/genética , Sementes/fisiologia , Estados Unidos
13.
Genome Biol Evol ; 10(9): 2501-2517, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137422

RESUMO

Reconstructions of vascular plant mitochondrial genomes (mt-genomes) are notoriously complicated by rampant recombination that has resulted in comparatively few plant mt-genomes being available. The dearth of plant mitochondrial resources has limited our understanding of mt-genome structural diversity, complex patterns of RNA editing, and the origins of novel mt-genome elements. Here, we use an efficient long read (PacBio) iterative assembly pipeline to generate mt-genome assemblies for Leucaena trichandra (Leguminosae: Caesalpinioideae: mimosoid clade), providing the first assessment of non-papilionoid legume mt-genome content and structure to date. The efficiency of the assembly approach facilitated the exploration of alternative structures that are common place among plant mitochondrial genomes. A compact version (729 kbp) of the recovered assemblies was used to investigate sources of mt-genome size variation among legumes and mt-genome sequence similarity to the legume associated root holoparasite Lophophytum. The genome and an associated suite of transcriptome data from select species of Leucaena permitted an in-depth exploration of RNA editing in a diverse clade of closely related species that includes hybrid lineages. RNA editing in the allotetraploid, Leucaena leucocephala, is consistent with co-option of nearly equal maternal and paternal C-to-U edit components, generating novel combinations of RNA edited sites. A preliminary investigation of L. leucocephala C-to-U edit frequencies identified the potential for a hybrid to generate unique pools of alleles from parental variation through edit frequencies shared with one parental lineage, those intermediate between parents, and transgressive patterns.


Assuntos
Fabaceae/genética , Genoma Mitocondrial , Edição de RNA , RNA Mitocondrial/genética , RNA de Plantas/genética , Transferência Genética Horizontal , Sequências Repetitivas de Ácido Nucleico , Sequências de Repetição em Tandem , Tetraploidia
14.
Am J Bot ; 105(3): 514-524, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29693728

RESUMO

PREMISE OF THE STUDY: Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti-herbivory defense and water-use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. METHODS: We produced a maximum-likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. KEY RESULTS: We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias-the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. CONCLUSIONS: Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection.


Assuntos
Asclepias/genética , Evolução Biológica , Fenótipo , Filogenia , Folhas de Planta , Tricomas , Ceras , Resistência à Doença/genética , Ecologia , Evolução Molecular , Genomas de Plastídeos , Herbivoria , Funções Verossimilhança , Modelos Genéticos , Transpiração Vegetal
15.
G3 (Bethesda) ; 8(5): 1461-1474, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29559535

RESUMO

Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated.


Assuntos
Pinus/genética , Transcriptoma/genética , Sequência de Aminoácidos , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Genoma de Planta , Geografia , Anotação de Sequência Molecular , Família Multigênica , América do Norte , Proteínas de Plantas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Seleção Genética , Análise de Sequência de RNA , Especificidade da Espécie
16.
BMC Genomics ; 18(1): 558, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738815

RESUMO

BACKGROUND: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS: We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS: Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.


Assuntos
Ritmo Circadiano/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Pseudotsuga/genética , Pseudotsuga/fisiologia , Transcrição Gênica , Escuridão , Perfilação da Expressão Gênica , Fotoperíodo , Folhas de Planta/efeitos da radiação , Pseudotsuga/efeitos da radiação , Transcrição Gênica/efeitos da radiação
17.
G3 (Bethesda) ; 7(9): 3157-3167, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28751502

RESUMO

A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms.


Assuntos
Genoma de Planta , Fotossíntese/genética , Pinaceae/genética , Pinaceae/metabolismo , Pseudotsuga/genética , Pseudotsuga/metabolismo , Sequenciamento Completo do Genoma , Adaptação Biológica/genética , Biologia Computacional , Evolução Molecular , Duplicação Gênica , Redes Reguladoras de Genes , Genômica , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Pinaceae/classificação , Proteômica/métodos , Pseudotsuga/classificação , Sequências Repetitivas de Ácido Nucleico
18.
Appl Plant Sci ; 5(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28529831

RESUMO

PREMISE OF THE STUDY: We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two regions in western Oregon, USA. METHODS: Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic origin. Specific wood molecules that contributed to geographic discrimination were identified. RESULTS: Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identified as key for classifying western Oregon Douglas-fir wood cores to geographic origin. DISCUSSION: DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moderate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identifying the geographic origin of illegally harvested wood.

19.
Genome ; 60(9): 720-732, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28445658

RESUMO

Owing to high rates of introgressive hybridization, the plastid genome is poorly suited to fine-scale DNA barcoding and phylogenetic studies of the oak genus (Quercus, Fagaceae). At the tips of the oak plastome phylogeny, recent gene migration and reticulation generally cause topology to reflect geographic structure, while deeper branches reflect lineage divergence. In this study, we quantify the simple and partial effects of geographic proximity and nucleome-inferred phylogenetic history on oak plastome phylogeny at different evolutionary scales. Our study compares pairwise phylogenetic distances based on complete plastome sequences, pairwise phylogenetic distances from nuclear restriction site-associated DNA sequences (RADseq), and pairwise geographic distances for 34 individuals of the white oak clade representing 24 North American and Eurasian species. Within the North American white oak clade alone, phylogenetic history has essentially no effect on plastome variation, while geography explains 11%-21% of plastome phylogenetic variance. However, across multiple continents and clades, phylogeny predicts 30%-41% of plastome variation, geography 3%-41%. Tipwise attenuation of phylogenetic informativeness in the plastome means that in practical terms, plastome data has little use in solving phylogenetic questions, but can still be a useful barcoding or phylogenetic marker for resolving questions among major clades.


Assuntos
Quercus/genética , DNA de Plantas , Evolução Molecular , Fluxo Gênico , Genes de Plantas , Filogenia , Filogeografia , Plastídeos/genética , Análise de Sequência de DNA
20.
PLoS One ; 11(6): e0158221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27352242

RESUMO

To detect and avoid illegal logging of valuable tree species, identification methods for the origin of timber are necessary. We used next-generation sequencing to identify chloroplast genome regions that differentiate the origin of white oaks from the three continents; Asia, Europe, and North America. By using the chloroplast genome of Asian Q. mongolica as a reference, we identified 861 variant sites (672 single nucleotide polymorphisms (SNPs); 189 insertion/deletion (indel) polymorphism) from representative species of three continents (Q. mongolica from Asia; Q. petraea and Q. robur from Europe; Q. alba from North America), and we identified additional chloroplast polymorphisms in pools of 20 individuals each from Q. mongolica (789 variant sites) and Q. robur (346 variant sites). Genome sequences were screened for indels to develop markers that identify continental origin of oak species, and that can be easily evaluated using a variety of detection methods. We identified five indels and one SNP that reliably identify continent-of-origin, based on evaluations of up to 1078 individuals representing 13 white oak species and three continents. Due to the size of length polymorphisms revealed, this marker set can be visualized using capillary electrophoresis or high resolution gel (acrylamide or agarose) electrophoresis. With these markers, we provide the wood trading market with an instrument to comply with the U.S. and European laws that require timber companies to avoid the trade of illegally harvested timber.


Assuntos
Mutação INDEL , Polimorfismo de Nucleotídeo Único , Quercus/genética , Código de Barras de DNA Taxonômico/métodos , DNA de Cloroplastos/genética , Evolução Molecular , Marcadores Genéticos , Quercus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...