Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; : e0014124, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967461

RESUMO

Papiliotrema laurentii 5307AH was isolated from an aircraft polymer-coated surface. The genome size is 19,510,785 bp with a G + C content of 56%. The genome harbors genes encoding oxygenases, cutinases, lipases, and enzymes for styrene degradation, all of which could play a critical role in survival on xenobiotic surfaces.

2.
Appl Environ Microbiol ; 90(5): e0169423, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624219

RESUMO

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.


Assuntos
Hidrolases de Éster Carboxílico , Proteínas Fúngicas , Poliésteres , Proteínas Recombinantes , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Poliésteres/metabolismo , Hidrólise
4.
Microbiol Resour Announc ; 13(3): e0075623, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376194

RESUMO

The Ascomycota yeast Aureobasidium melanogenum strain W12 was isolated from an aircraft polymer-coated surface. The genome size is 53,160,883 bp with a G + C content of 50.13%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases potentially used for survival on polymer coatings on aircraft.

5.
Sci Rep ; 13(1): 13192, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580360

RESUMO

Nature offers many examples of materials which exhibit exceptional properties due to hierarchical assembly of their constituents. In well-studied multi-cellular systems, such as the morpho butterfly, a visible indication of having ordered submicron features is given by the display of structural color. Detailed investigations of nature's designs have yielded mechanistic insights and led to the development of biomimetic materials at laboratory scales. However, the manufacturing of hierarchical assemblies at industrial scales remains difficult. Biomanufacturing aims to leverage the autonomy of biological systems to produce materials at lower cost and with fewer carbon emissions. Earlier reports documented that some bacteria, particularly those with gliding motility, self-assemble into biofilms with polycrystalline structures and exhibit glittery, iridescent colors. The current study demonstrates the potential of using one of these bacteria, Cellulophaga lytica, as a platform for the large scale biomanufacturing of ordered materials. Specific approaches for controlling C. lytica biofilm optical, spatial and temporal properties are reported. Complementary microscopy-based studies reveal that biofilm color variations are attributed to changes in morphology induced by cellular responses to the local environment. Incorporation of C. lytica biofilms into materials is also demonstrated, thereby facilitating their handling and downstream processing, as would be needed during manufacturing processes. Finally, the utility of C. lytica as a self-printing, photonic ink is established by this study. In summary, autonomous surface assembly of C. lytica under ambient conditions and across multiple length scales circumvent challenges that currently hinder production of ordered materials in industrial settings.


Assuntos
Flavobacteriaceae , Flavobacteriaceae/química , Biofilmes , Fótons , Iridescência
6.
Microbiol Resour Announc ; 11(9): e0024222, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35946952

RESUMO

The Basidiomycota yeast Naganishia albida strain 5307AI was isolated from an aircraft polymer-coated surface. The genome size is 20,642,279 bp, with a G+C content of 53.99%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases that are likely used for survival on polymer coatings on aircraft.

7.
J Appl Microbiol ; 132(1): 351-364, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34297452

RESUMO

AIMS: Biochemical hydrolysis and chemical catalysis are involved in the successful biodegradation of polymers. In order to evaluate the potential separation between biochemical and chemical catalysis during the biodegradation process, we report the use of two diphenylpolyenes (DPPs), all trans-1,4-diphenylbutadiene (DPB) and all trans-1,6-diphenylhexatriene (DPH), as potential acid-sensitive indicators in polymers. METHODS AND RESULTS: 1,4-Diphenylbutadiene and DPH (0.1% w/w) were melt-cast successfully with poly(ethylene succinate) hexamethylene (PES-HM) polyurethane (thermoset polyester polyurethane) coatings above 80℃. When these two DPP/PES-HM coatings were exposed to a concentrated supernatant with significant esterase activity resulting from the growth of a recently isolated and identified strain of Tremellomycetes yeast (Naganishia albida 5307AI), the DPB coatings exhibited a measurable and reproducible localized decrease in the blue fluorescence emission in regions below where hydrolytic biodegradation was initiated in contrast with DPH blended coatings. The fluorescence changes observed in the biodegraded DPB coating were similar to exposing them to concentrated acids and not bases. CONCLUSIONS: Our experiments resulted in (1) a method to blend DPP additives into thermoset coatings, (2) the first report of the biodegradation of polyester polyurethane coating by N. albida, and (3) demonstration that hydrolytic supernatants from this strain generate acidic region within degrading polyester coatings using DPB as the indicator. SIGNIFICANCE AND IMPACT OF THE STUDY: Our experiments confirm that N. albida is an active polyester degrader and that DPB is a promising acid sensitive polymer coating additive.


Assuntos
Poliésteres , Poliuretanos , Biodegradação Ambiental , Compostos de Bifenilo , Polienos
8.
Front Microbiol ; 11: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174893

RESUMO

Renewable fuels hold great promise for the future yet their susceptibility to biodegradation and subsequent corrosion represents a challenge that needs to be directly assessed. Biodiesel is a renewable fuel that is widely used as a substitute or extender for petroleum diesel and is composed of a mixture of fatty acid methyl esters derived from plant or animal fats. Biodiesel can be blended up to 20% v/v with ultra-low sulfur diesel (i.e., B20) and used interchangeably with diesel engines and infrastructure. The addition of biodiesel, however, has been linked to increased susceptibility to biodegradation. Microorganisms proliferating via degradation of biodiesel blends have been linked to microbiologically influenced corrosion in the laboratory, but not measured directly in storage tanks (i.e., in situ). To measure in situ microbial proliferation, fuel degradation and microbially influenced corrosion, we conducted a yearlong study of B20 storage tanks in operation at two locations, identified the microorganisms associated with fuel fouling, and measured in situ corrosion. The bacterial populations were more diverse than the fungal populations, and largely unique to each location. The bacterial populations included members of the Acetobacteraceae, Clostridiaceae, and Proteobacteria. The abundant Eukaryotes at both locations consisted of the same taxa, including a filamentous fungus within the family Trichocomaceae, not yet widely recognized as a contaminant of petroleum fuels, and the Saccharomycetaceae family of yeasts. Increases in the absolute and relative abundances of the Trichocomaceae were correlated with significant, visible fouling and pitting corrosion. This study identified the relationship between fouling of B20 with increased rates of corrosion and the microorganisms responsible, largely at the bottom of the sampled storage tanks. To our knowledge this is the first in situ study of this scale incorporating community and corrosion measurements in an active biodiesel storage environment.

9.
Langmuir ; 36(6): 1596-1607, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32026679

RESUMO

Painted environmental surfaces are prone to microbiological colonization with potential coating deterioration induced by the microorganisms. Accurate mechanistic models of these interactions require an understanding of the heterogeneity in which the deterioration processes proceed. Here, unsaturated biofilms (i.e., at air/solid interfaces) of the yeast Papiliotrema laurentii were prepared on polyether polyurethane (PEUR) and polyester-polyether polyurethane (PEST-PEUR) coatings and incubated for up to 33 days at controlled temperature and humidity with no additional nutrients. Transmission micro-Fourier transform infrared microscopy (µFTIR) confirmed preferential hydrolysis of the ester component by the biofilm. Atomic force microscopy combined with infrared nanospectroscopy (AFM-IR) was used to analyze initial PEST-PEUR coating deterioration processes at the single-cell level, including underlying surfaces that became exposed following cell translocation. The results revealed distinct deterioration features that remained localized within ∼10 µm or less of the edges of individual cells and cell clusters. These features comprised depressions of up to ∼300 nm with locally reduced ester/urethane ratios. They are consistent with a formation process initiated by enzymatic ester hydrolysis followed by erosion from water condensation cycles. Further observations included particle accumulation in the broader biofilm vicinity. AFM-IR spectroscopy indicated these to be secondary microplastics consisting of urethane-rich oligomeric aggregates. Overall, multiple contributing factors have been identified that can facilitate differential deterioration rates across the PEST-PEUR surface. Effects of the imposed nutrient conditions on Papiliotrema laurentii physiology were also apparent, with cells developing the characteristics of starvation response, despite the availability of polyester metabolites as a carbon source. The combined results provide new laboratory insights into field-relevant microbiological polymer deterioration mechanisms and biofilm physiology at polymer coating interfaces.


Assuntos
Microplásticos , Poliuretanos , Basidiomycota , Biofilmes , Plásticos
10.
ACS Synth Biol ; 8(12): 2746-2755, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31750651

RESUMO

Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule. In addition to the laboratory strain Escherichia coli, organisms were screened from soil and seawater. Putative PG-producing enzymes were mined from a strain bank of bacteria isolated from aircraft and fuel depots. The best enzyme was introduced into the ocean strain Marinobacter atlanticus CP1 with its genome edited to redirect carbon flux from natural fatty acid ester (FAE) production. PG production was also attempted in Bacillus subtilis and Clostridium acetobutylicum. A genetic circuit was constructed in E. coli that responds to PG accumulation, which was then ported to an in vitro paper-based system that could serve as a platform for future low-cost strain screening or for in-field sensing. Collectively, these efforts show how distributed biotechnology laboratories with domain-specific expertise can be marshalled to quickly provide a solution for a targeted organism engineering project, and highlights data and material sharing protocols needed to accelerate future efforts.


Assuntos
Engenharia Metabólica , Nitrobenzenos/metabolismo , Floroglucinol/metabolismo , Escherichia coli/metabolismo , Testes Genéticos , Floroglucinol/química
11.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346009

RESUMO

Phialemoniopsis curvata D216 is a filamentous fungus isolated from contaminated diesel fuel. The genome size is 40.3 Mbp with a G+C content of 54.81%. Its genome encodes enzymes and pathways likely involved in the degradation of and survival in fuel, including lipases, fatty acid transporters, and beta oxidation.

12.
Genome Announc ; 6(9)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496829

RESUMO

Pseudomonas sp. strain WP001 is a laboratory isolate capable of polyurethane polymer degradation and harbors a predicted lipase precursor gene. The genome of strain WP001 is 6.15 Mb in size and is composed of seven scaffolds with a G+C content of 60.54%. Strain WP001 is closely related to Pseudomonas fluorescens based on ribosomal DNA comparisons.

13.
Genome Announc ; 6(9)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496830

RESUMO

Byssochlamys sp. strain AF001 is a filamentous fungus isolated from fouled B20 biodiesel. Its growth on B20 biodiesel results in the degradation and fouling of the fuel and higher rates of corrosion in affected storage tanks. The genome of Byssochlamys sp. AF001 is 35.9 Mbp and is composed of 10 scaffolds, with a G+C content of 45.89%.

14.
Biofouling ; 32(10): 1163-1170, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27718644

RESUMO

In the present study, the use of bacteriophages to prevent growth and/or biofouling by Pseudomonas aeruginosa PAO1 was investigated in microcosms containing Jet A aviation fuel as the carbon source. Bacteriophages were found to be effective at preventing biofilm formation but did not always prevent planktonic growth in the microcosms. This result was at odds with experiments conducted in nutrient-rich medium, demonstrating the necessity to test antimicrobial and antifouling strategies under conditions as near as possible to the 'real world'. The success of the bacteriophages at preventing biofilm formation makes them potential candidates as antifouling agents for fuel systems.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Hidrocarbonetos/análise , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Aviação
15.
Appl Environ Microbiol ; 82(20): 6080-6090, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27496773

RESUMO

Polyester polyurethane (PU) coatings are widely used to help protect underlying structural surfaces but are susceptible to biological degradation. PUs are susceptible to degradation by Pseudomonas species, due in part to the degradative activity of secreted hydrolytic enzymes. Microorganisms often respond to environmental cues by secreting enzymes or secondary metabolites to benefit their survival. This study investigated the impact of exposing several Pseudomonas strains to select carbon sources on the degradation of the colloidal polyester polyurethane Impranil DLN (Impranil). The prototypic Pseudomonas protegens strain Pf-5 exhibited Impranil-degrading activities when grown in sodium citrate but not in glucose-containing medium. Glucose also inhibited the induction of Impranil-degrading activity by citrate-fed Pf-5 in a dose-dependent manner. Biochemical and mutational analyses identified two extracellular lipases present in the Pf-5 culture supernatant (PueA and PueB) that were involved in degradation of Impranil. Deletion of the pueA gene reduced Impranil-clearing activities, while pueB deletion exhibited little effect. Removal of both genes was necessary to stop degradation of the polyurethane. Bioinformatic analysis showed that putative Cbr/Hfq/Crc-mediated regulatory elements were present in the intergenic sequences upstream of both pueA and pueB genes. Our results confirmed that both PueA and PueB extracellular enzymes act in concert to degrade Impranil. Furthermore, our data showed that carbon sources in the growth medium directly affected the levels of Impranil-degrading activity but that carbon source effects varied among Pseudomonas strains. This study uncovered an intricate and complicated regulation of P. protegens PU degradation activity controlled by carbon catabolite repression. IMPORTANCE: Polyurethane (PU) coatings are commonly used to protect metals from corrosion. Microbiologically induced PU degradation might pose a substantial problem for the integrity of these coatings. Microorganisms from diverse genera, including pseudomonads, possess the ability to degrade PUs via various means. This work identified two extracellular lipases, PueA and PueB, secreted by P. protegens strain Pf-5, to be responsible for the degradation of a colloidal polyester PU, Impranil. This study also revealed that the expression of the degradative activity by strain Pf-5 is controlled by glucose carbon catabolite repression. Furthermore, this study showed that the Impranil-degrading activity of many other Pseudomonas strains could be influenced by different carbon sources. This work shed light on the carbon source regulation of PU degradation activity among pseudomonads and identified the polyurethane lipases in P. protegens.


Assuntos
Repressão Catabólica , Poliuretanos/metabolismo , Pseudomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Ácido Cítrico/metabolismo , Pseudomonas/genética
16.
Analyst ; 141(16): 4848-54, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27403761

RESUMO

AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions.


Assuntos
Microscopia de Força Atômica , Poliuretanos , Pseudomonas , Espectrofotometria Infravermelho , Polímeros
17.
Artigo em Inglês | MEDLINE | ID: mdl-26958436

RESUMO

In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of "drop-in" fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation.

18.
Biofouling ; 29(6): 601-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23697763

RESUMO

Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Pintura , Poliuretanos , Pseudomonas fluorescens , Biofilmes/efeitos dos fármacos , Materiais de Construção/microbiologia , Meios de Cultura , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pintura/microbiologia , Pintura/normas , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Poliuretanos/normas , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/fisiologia , Espectrometria por Raios X , Propriedades de Superfície
19.
Stand Genomic Sci ; 7(1): 175-88, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23451296

RESUMO

The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, "Paths to Cephalopod Genomics- Strategies, Choices, Organization," held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.

20.
J R Soc Interface ; 7(44): 549-60, 2010 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19776150

RESUMO

Many cephalopods exhibit remarkable dermal iridescence, a component of their complex, dynamic camouflage and communication. In the species Euprymna scolopes, the light-organ iridescence is static and is due to reflectin protein-based platelets assembled into lamellar thin-film reflectors called iridosomes, contained within iridescent cells called iridocytes. Squid in the family Loliginidae appear to be unique in which the dermis possesses a dynamic iridescent component with reflective, coloured structures that are assembled and disassembled under the control of the muscarinic cholinergic system and the associated neurotransmitter acetylcholine (ACh). Here we present the sequences and characterization of three new members of the reflectin family associated with the dynamically changeable iridescence in Loligo and not found in static Euprymna iridophores. In addition, we show that application of genistein, a protein tyrosine kinase inhibitor, suppresses ACh- and calcium-induced iridescence in Loligo. We further demonstrate that two of these novel reflectins are extensively phosphorylated in concert with the activation of iridescence by exogenous ACh. This phosphorylation and the correlated iridescence can be blocked with genistein. Our results suggest that tyrosine phosphorylation of reflectin proteins is involved in the regulation of dynamic iridescence in Loligo.


Assuntos
Loligo/metabolismo , Proteínas/metabolismo , Acetilcolina/metabolismo , Acetilcolina/fisiologia , Sequência de Aminoácidos , Animais , Cor , Genisteína/farmacologia , Loligo/anatomia & histologia , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Proteínas/química , Alinhamento de Sequência , Transdução de Sinais , Pele/anatomia & histologia , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...