Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 169881, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190895

RESUMO

The hydrological restoration of coastal wetlands is an emerging approach for mitigating and adapting to climate change and enhancing ecosystem services such as improved water quality and biodiversity. This paper synthesises current knowledge on selecting appropriate modelling approaches for hydrological restoration projects. The selection of a modelling approach is based on project-specific factors, such as costs, risks, and uncertainties, and aligns with the overall project objectives. We provide guidance on model selection, emphasising the use of simpler and less expensive modelling approaches when appropriate, and identifying situations when models may not be required for project managers to make informed decisions. This paper recognises and supports the widespread use of hydrological restoration in coastal wetlands by bridging the gap between hydrological science and restoration practices. It underscores the significance of project objectives, budget, and available data and offers decision-making frameworks, such as decision trees, to aid in matching modelling methods with specific project outcomes.

2.
Glob Chang Biol ; 23(12): 5468-5480, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28815992

RESUMO

Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm-3 across 0-15 cm, 0.055 g cm-3 across 0-100 cm, and 0.040 g cm-3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements.


Assuntos
Carbono/química , Solo/química , Ondas de Maré , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Água Doce , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...