Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 468, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641089

RESUMO

BACKGROUND: In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis vinifera L.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101-14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin in Pinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. RESULTS: RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. CONCLUSIONS: Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101-14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, the MYB14 gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries.


Assuntos
Frutas/genética , Vitis/genética , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Ontologia Genética , Genoma de Planta , MicroRNAs/metabolismo , Fenóis/análise , Raízes de Plantas/crescimento & desenvolvimento , RNA-Seq , Metabolismo Secundário/genética , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Tempo (Meteorologia)
2.
Mol Gen Genet ; 263(2): 194-200, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10778737

RESUMO

Although cold acclimation in cereals involves the expression of many cold-regulated genes, genetic studies have shown that only very few chromosomal regions carry loci that play an important role in frost tolerance. To investigate the genetic relationship between frost tolerance and the expression of cold-regulated genes, the expression and regulation of the wheat homolog of the barley cold-regulated gene cor14b was studied at various temperatures in frost-sensitive and frost-tolerant wheat genotypes. At 18/15 degrees C (day/night temperatures) frost-tolerant plants accumulated cor14b mRNAs and expressed COR14b proteins, whereas the sensitive plants did not. This result indicates that the threshold temperature for induction of the wheat cor14b homolog is higher in frost-resistant plants, and allowed us to use this polymorphism in a mapping approach. Studies made with chromosome substitution lines showed that the polymorphism for the threshold induction temperature of the wheat cor14b homolog is controlled by a locus(i) located on chromosome 5A of wheat, while the cor14b gene was mapped in Triticum monococcum on the long arm of chromosome 2Am. The analysis of single chromosome recombinant lines derived from a cross between Chinese Spring/Triticum spelta 5A and Chinese Spring/Cheyenne 5A identified two loci with additive effects that are involved in the genetic control of cor14b mRNA accumulation. The first locus was tightly linked to the marker psr911, while the second one was located between the marker Xpsr2021 and Frost resistance 1 (Fr1).


Assuntos
Cromossomos , Genes de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Triticum/genética , Northern Blotting , Western Blotting , Temperatura Baixa , Congelamento , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genótipo , Cinética , Polimorfismo de Fragmento de Restrição , Recombinação Genética , Fatores de Tempo
3.
Plant Physiol ; 119(2): 671-80, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9952464

RESUMO

We report the expression of the barley (Hordeum vulgare L.) COR (cold-regulated) gene cor14b (formerly pt59) and the accumulation of its chloroplast-localized protein product. A polyclonal antibody raised against the cor14b-encoded protein detected two chloroplast COR proteins: COR14a and COR14b. N-terminal sequencing of COR14a and expression of cor14b in Arabidopsis plants showed that COR14a is not encoded by the cor14b sequence, but it shared homology with the wheat (Triticum aestivum L.) WCS19 COR protein. The expression of cor14b was strongly impaired in the barley albino mutant an, suggesting the involvement of a plastidial factor in the control of gene expression. Low-level accumulation of COR14b was induced by cold treatment in etiolated plants, although cor14b expression and protein accumulation were enhanced after a short light pulse. Light quality was a determining factor in regulating gene expression: red or blue but not far-red or green light pulses were able to promote COR14b accumulation in etiolated plants, suggesting that phytochrome and blue light photoreceptors may be involved in the control of cor14b gene expression. Maximum accumulation of COR14b was reached only when plants were grown and/or hardened under the standard photoperiod. The effect of light on the COR14b stability was demonstrated by using transgenic Arabidopsis. These plants constitutively expressed cor14b mRNAs regardless of temperature and light conditions; nevertheless, green plants accumulated about twice as much COR14b protein as etiolated plants.


Assuntos
Genes de Plantas , Proteínas de Choque Térmico/genética , Hordeum/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Cloroplastos/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Choque Térmico/metabolismo , Hordeum/metabolismo , Hordeum/efeitos da radiação , Luz , Dados de Sequência Molecular , Mutação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
4.
Theor Appl Genet ; 93(5-6): 975-81, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24162433

RESUMO

The cold-regulated (COR14) protein of 14 kDa is a polypeptide accumulated under low-temperature conditions in the chloroplasts of barley leaves. In H. vulgare the COR14 antibody cross-reacts with two proteins, with a slightly different relative molecular weight around the marker of 14.4 kDa, referred to as COR14a and COR14b (high and low relative molecular weight, respectively). In a collection of H. spontaneum genotypes a clear polymorphism was found for the corresponding COR proteins. While some accessions showed the same COR pattern as cultivated barley, in 38 out of 61 accessions examined the COR14 antibody cross-reacted with an additional coldregulated protein with a relative molecular weight of about 24 kDa (COR24). The accumulation of COR24 was often associated with the absence of COR14b; the relationship between the COR14b/COR24 polymorphism and the adaptation of H. spontaneum to different environments is discussed. By studying COR14 accumulation in cultivated barley we have found that the threshold induction-temperature of COR14a is associated with the loci controlling winter hardiness. This association was demonstrated by using either a set of 30 cultivars of different origin, or two sets of frost-tolerant and frost-sensitive F1 doubled-haploid lines derived from the cross Dicktoo (winter type) x Morex (spring type). These results suggest that the threshold induction-temperature of COR14a can be a potential biochemical marker for the identification of superior frostresistant barley genotypes.

5.
Planta ; 196(3): 458-63, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-7647681

RESUMO

The protein encoded by cDNA clone pt59 and induced in barley (Hordeum vulgare L.) by cold was over-expressed in coli to produce the matching antibody, which in vivo recognized a cold-induced protein of 14 kDa (COR14) that was found in the chloroplast stroma. The accumulation of COR14 occurred only at low temperatures after even a brief exposure of the plants to light. Plants grown and fully hardened in the dark accumulated a reduced amount of pt59-corresponding mRNA and only traces of COR14. Light exposure for as short as 5 min was enough to normalize the expression of pt59-corresponding mRNA and increase the accumulation of COR14. These findings indicate that one or more light-dependent factors are involved in transcription of the gene and accumulation of the protein. The COR14 protein was stored in amounts only slightly greater in the resistant barley cultivar. Onice than in the susceptible cultivar Gitane, although the former had a higher induction-temperature threshold for COR14 than the latter. This fact is an evolutionary advantage, enabling the resistant varieties in the field to prepare the cold well ahead of the susceptible ones.


Assuntos
Cloroplastos/metabolismo , Temperatura Baixa , Proteínas de Choque Térmico/metabolismo , Hordeum/metabolismo , Luz , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cloroplastos/efeitos da radiação , Hordeum/efeitos da radiação , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...