Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(43): 12006-12011, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27702905

RESUMO

In nature, several seabirds (e.g., gannets and boobies) dive into water at up to 24 m/s as a hunting mechanism; furthermore, gannets and boobies have a slender neck, which is potentially the weakest part of the body under compression during high-speed impact. In this work, we investigate the stability of the bird's neck during plunge-diving by understanding the interaction between the fluid forces acting on the head and the flexibility of the neck. First, we use a salvaged bird to identify plunge-diving phases. Anatomical features of the skull and neck were acquired to quantify the effect of beak geometry and neck musculature on the stability during a plunge-dive. Second, physical experiments using an elastic beam as a model for the neck attached to a skull-like cone revealed the limits for the stability of the neck during the bird's dive as a function of impact velocity and geometric factors. We find that the neck length, neck muscles, and diving speed of the bird predominantly reduce the likelihood of injury during the plunge-dive. Finally, we use our results to discuss maximum diving speeds for humans to avoid injury.


Assuntos
Aves/fisiologia , Mergulho/fisiologia , Comportamento Alimentar/fisiologia , Modelos Anatômicos , Animais , Fenômenos Biomecânicos , Aves/anatomia & histologia , Módulo de Elasticidade , Humanos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...