Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746337

RESUMO

A key challenge for single cell discovery analysis is to identify new cell types, describe them quantitatively, and seek these novel cells in new studies often using a different platform. Over the last decade, tools were developed to address identification and quantitative description of cells in human tissues and tumors. However, automated validation of populations at the single cell level has struggled due to the cytometry field's reliance on hierarchical, ordered use of features and on platform-specific rules for data processing and analysis. Here we present Velociraptor, a workflow that implements Marker Enrichment Modeling in three cross-platform modules: 1) identification of cells specific to disease states, 2) description of hallmark features for each cell and population, and 3) searching for cells matching one or more hallmark feature sets in a new dataset. A key advance is that Velociraptor registers cells between datasets, including between flow cytometry and quantitative imaging using different, overlapping feature sets. Four datasets were used to challenge Velociraptor and reveal new biological insights. Working at the individual sample level, Velociraptor tracked the abundance of clinically significant glioblastoma brain tumor cell subsets and characterized the cells that predominate in recurrent tumors as a close match for rare, negative prognostic cells originally observed in matched pre-treatment tumors. In patients with inborn errors of immunity, Velociraptor identified genotype-specific cells associated with GATA2 haploinsufficiency. Finally, in cross-platform analysis of immune cells in multiplex imaging of breast cancer, Velociraptor sought and correctly identified memory T cell subsets in tumors. Different phenotypic descriptions generated by algorithms or humans were shown to be effective as search inputs, indicating that cell identity need not be described in terms of per-feature cutoffs or strict hierarchical analyses. Velociraptor thus identifies cells based on hallmark feature sets, such as protein expression signatures, and works effectively with data from multiple sources, including suspension flow cytometry, imaging, and search text based on known or theoretical cell features.

2.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585888

RESUMO

Adult IDH-wildtype glioblastoma (GBM) is a highly aggressive brain tumor with no established immunotherapy or targeted therapy. Recently, CD32+ HLA-DRhi macrophages were shown to have displaced resident microglia in GBM tumors that contact the lateral ventricle stem cell niche. Since these lateral ventricle contacting GBM tumors have especially poor outcomes, identifying the origin and role of these CD32+ macrophages is likely critical to developing successful GBM immunotherapies. Here, we identify these CD32+ cells as M_IL-8 macrophages and establish that IL-8 is sufficient and necessary for tumor cells to instruct healthy macrophages into CD32+ M_IL-8 M2 macrophages. In ex vivo experiments with conditioned medium from primary human tumor cells, inhibitory antibodies to IL-8 blocked the generation of CD32+ M_IL-8 cells. Finally, using a set of 73 GBM tumors, IL-8 protein is shown to be present in GBM tumor cells in vivo and especially common in tumors contacting the lateral ventricle. These results provide a mechanistic origin for CD32+ macrophages that predominate in the microenvironment of the most aggressive GBM tumors. IL-8 and CD32+ macrophages should now be explored as targets in combination with GBM immunotherapies, especially for patients whose tumors present with radiographic contact with the ventricular-subventricular zone stem cell niche.

3.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617217

RESUMO

The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.

4.
Curr Protoc ; 2(11): e584, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36383032

RESUMO

The guinea pig was the original animal model developed for investigating spotted fever rickettsiosis (SFR). This model system has persisted on account of the guinea pig's conduciveness to tick transmission of SFR agents and ability to recapitulate SFR in humans through clinical signs that include fever, unthriftiness, and in some cases the development of an eschar. The guinea pig is the smallest animal model for SFR that allows the collection of multiple blood and skin samples antemortem for longitudinal studies. This unit provides the basic protocols necessary to establish, maintain, and utilize a guinea pig-tick-Rickettsia model for monitoring the course of infection and immune response to an infection by spotted fever group Rickettsia (SFGR) that can be studied at biosafety level 2 (BSL-2) and arthropod containment level 2 (ACL-2); adaptations must be made for BSL-3 agents. The protocols cover methods for tick feeding and colony development, laboratory infection of ticks, tick transmission of Rickettsia to guinea pigs, and monitoring of the course of infection through clinical signs, rickettsial burden, and immune response. It should be feasible to adapt these methods to study other tick-borne pathogens. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tick transmission of SFGR to guinea pigs Support Protocol 1: Laboratory infection of ticks by injection Alternate Protocol 1: Needle inoculation of SFGR to guinea pigs Basic Protocol 2: Monitoring the course of guinea pig rickettsial infection: clinical signs Basic Protocol 3: Monitoring the course of guinea pig rickettsial infection: collection of biological specimens Support Protocol 2: Guinea pig anesthesia Basic Protocol 4: Monitoring rickettsial burden in guinea pigs by multiplex qPCR Basic Protocol 5: Monitoring guinea pig immune response to infection: blood leukocytes by flow cytometry Basic Protocol 6: Monitoring immune response to guinea pig rickettsial infection: leukocyte infiltration of skin at the tick bite site by flow cytometry Basic Protocol 7: Monitoring the immune response to guinea pig rickettsial infection: antibody titer by ELISA Support Protocol 4: Coating ELISA Plates Alternate Protocol 2: Monitoring immune response to guinea pig rickettsial infection: antibody titer by immunofluorescence assay.


Assuntos
Rickettsiose do Grupo da Febre Maculosa , Carrapatos , Animais , Cobaias , Humanos , Modelos Animais de Doenças , Imunidade , Infecção Laboratorial , Rickettsia/fisiologia , Rickettsiose do Grupo da Febre Maculosa/diagnóstico , Rickettsiose do Grupo da Febre Maculosa/imunologia , Carrapatos/microbiologia
5.
Pathogens ; 11(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631115

RESUMO

Spotted Fever Rickettsiosis (SFR) is caused by spotted fever group Rickettsia spp. (SFGR), and is associated with symptoms common to other illnesses, making it challenging to diagnose before detecting SFGR-specific antibodies. The guinea pig is a valuable biomedical model for studying Spotted Fever Rickettsiosis (SFR); its immune system is more like the human immune system than that of the murine model, and guinea pigs develop characteristic clinical signs. Thus, we have a compelling interest in developing, expanding, and optimizing tools for use in our guinea pig-Amblyomma-Rickettsia system for understanding host-tick-pathogen interactions. With the design and optimization of the three multiplex TaqMan® qPCR assays described here, we can detect the two SFGR, their respective primary Amblyomma sp. vectors, and the guinea pig model as part of controlled experimental studies using tick-transmission of SFGR to guinea pigs. We developed qPCR assays that reliably detect each specific target down to 10 copies by producing plasmid standards for each assay target, optimizing the individual primer-probe sets, and optimizing the final multiplex reactions in a methodical, stepwise fashion. We anticipate that these assays, currently designed for in vivo studies, will serve as a foundation for optimal SFGR detection in other systems, including fieldwork.

6.
Pathogens ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215063

RESUMO

Intact, the skin typically serves as an effective barrier to the external world; however, once pathogens have breached this barrier via a wound, such as a tick bite, the surrounding tissues must recruit immune cells from the blood to neutralize the pathogen. With innate and adaptive immune systems being similar between the guinea pig and human systems, the ability of guinea pigs to show clinical signs of many infectious diseases, and the large size of guinea pigs relative to a murine model, the guinea pig is a valuable model for studying tick-borne and other pathogens that invade the skin. Here, we report a novel assay for assessing guinea pig leukocyte infiltration in the skin. Briefly, we developed an optimized six-color/eight-parameter polychromatic flow cytometric panel that combines enzymatic and mechanical dissociation of skin tissue with fluorescent antibody staining to allow for the immunophenotyping of guinea pig leukocytes that have migrated into the skin, resulting in inflammation. We designed this assay using a guinea pig model for tick-borne rickettsiosis to further investigate host-pathogen interactions in the skin, with preliminary data demonstrating immunophenotyping at skin lesions from infected ticks. We anticipate that future applications will include hypothesis testing to define the primary immune cell infiltrates responding to exposure to virulent, avirulent tick-borne rickettsiae, and tick-borne rickettsiae of unknown virulence. Other relevant applications include skin lesions resulting from other vector-borne pathogens, Staphylococcus aureus infection, and Buruli ulcer caused by Mycobacterium ulcerans.

7.
Pathogens ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498380

RESUMO

Based on limited serological studies, at least 10% of the US population has been exposed to spotted fever group Rickettsia (SFGR) species. The immunofluorescence antibody assay (IFA) has been the gold standard for the serodiagnosis of rickettsial infections such as spotted fever rickettsiosis (SFR). However, the IFA is semi-quantitative and subjective, requiring a high level of expertise to interpret it correctly. Here, we developed an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of Rickettsia parkeri infection in the guinea pig. Our ELISA is an objective, quantitative, and high-throughput assay that shows greater sensitivity and resolution in observed titers than the IFA. We methodically optimized relevant parameters in sequence for optimal signal-to-noise ratio and low coefficient of variation% values. We used a guinea pig model as it is a part of our overall research efforts to understand the immunological and clinical response to SFGR species after tick transmission. Guinea pigs are a useful model to study SFR and show clinical signs of SFR, such as fever and eschars. We anticipate that this assay will be easily adapted to other hosts, including humans and other SFGR species.

8.
J Immunol Methods ; 476: 112682, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682796

RESUMO

Guinea pigs are an ideal animal model for the study of several infectious diseases, including tuberculosis, legionellosis, brucellosis, and spotted fever rickettsiosis. In comparison to the murine model, clinical signs in guinea pigs are more representative of disease in humans, the guinea pig immune system is more similar to that of the human, and their large size offers logistic advantages for sample collection while following disease progression. Unfortunately, the advantage of using guinea pigs in biomedical research, particularly in understanding the immune response to infectious agents, is limited in large part by the paucity of available reagents and lack of genetically manipulated strains. Here, we expand the utility of guinea pigs in biomedical research by establishing an optimized five-color/seven-parameter polychromatic flow cytometric assay for immunophenotyping lymphocytes. This assay fills a need for immunophenotyping peripheral blood lymphocytes and is an improvement over current published flow cytometry assays for guinea pigs. We anticipate that our approach will be an important starting point for developing new assays to evaluate the cellular immune response to infectious diseases in the guinea pig model. Importantly, we are currently using this assay for evaluating immunity to spotted fever rickettsiosis in a guinea pig-tick-Rickettsia system, where CD8+ T cells are a critical contributor to the immune response. Developing resources to utilize the guinea pig more effectively will enhance our ability to understand infectious diseases where the guinea pig would otherwise be the ideal model.


Assuntos
Citometria de Fluxo/veterinária , Imunofenotipagem/veterinária , Linfócitos/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo/instrumentação , Corantes Fluorescentes , Cobaias , Imunofenotipagem/instrumentação , Masculino , Infecções por Rickettsia/imunologia , Infecções por Rickettsia/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...