Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 61(34): 12835-12844, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36065446

RESUMO

In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO2) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethane-commonly used for thermal insulation, acoustic insulation, and cushioning-which increasingly relies on CO2 to replace environmentally harmful blowing agents. Polyurethane is produced through the reaction of isocyanate and polyol, of which the polyol has the higher capacity for dissolving CO2. While previous studies have suggested the importance of the effect of hydroxyl end groups on CO2 solubility in short polyols (<1000 g/mol), their effect in polyols with higher molecular weight (≥1000 g/mol) and higher functionality (>2 hydroxyls per chain)-as are commonly used in polyurethane foams-has not been reported. Here, we show that the solubility of CO2 in polyether polyols decreases with molecular weight above 1000 g/mol and decreases with functionality using measurements performed by gravimetry-axisymmetric drop-shape analysis. The nonmonotonic effect of molecular weight on CO2 solubility results from the competition between effects that reduce CO2 solubility (lower mixing entropy) and effects that increase CO2 solubility (lower ratio of hydroxyl end groups to ether backbone groups). To generalize our measurements, we modeled the CO2 solubility using a perturbed chain-statistical associating fluid theory (PC-SAFT) model, which we validated by showing that a density functional theory model based on the PC-SAFT free energy accurately predicted the interfacial tension.

2.
J Phys Chem B ; 113(45): 14971-80, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19845375

RESUMO

Ab initio molecular modeling is used to design nonfluorous polymers that are potentially soluble in liquid CO2. We have used calculations to design three nonfluorous compounds meant to model the monomeric repeat units of polymers that exhibit multiple favorable binding sites for CO2. These compounds are methoxy isopropyl acetate, 2-methoxy ethoxy-propane, and 2-methoxy methoxy-propane. We have synthesized oligomers or polymers based on these small compounds and have tested their solubility in CO2. All three of these exhibit appreciable solubility in CO2. At 25 degrees C, oligo(3-acetoxy oxetane)6 is 5 wt % soluble at 25 MPa, the random copolymer (vinyl methoxymethyl ether30-co-vinyl acetate9) is 5 wt % soluble at 70 MPa and random copolymer (vinyl 1-methoxyethyl ether30-co-vinyl acetate9) is 3 wt % soluble at 120 MPa. These oligomers and polymers represent new additions to the very short list of nonfluorous CO2-soluble polymers. However, none of these are more soluble than poly(vinyl acetate), which exhibits the highest CO2 solubility of any known polymer containing only the elements C, H, and O.

3.
J Phys Chem B ; 110(18): 9354-61, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16671755

RESUMO

Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation (pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...