Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 368(19)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34626182

RESUMO

The diverse bacterial communities in and around plants provide important benefits, such as protection against pathogens and cycling of essential minerals through decomposition of moribund plant biomass. Biodiverse fynbos landscapes generally have limited deadwood habitats due to the absence of large trees and frequent fire. In this study, we determined the effect of a fire disturbance on the bacterial communities in a fynbos landscape dominated by the shrub Protea repens using 16S ribosomal RNA amplicon sequencing. The bacterial community composition in newly formed fruiting structures (infructescences) and soil at a recently burnt site was different from that in an unburnt site. Bacteria inhabiting P. repens infructescences were similar to well-known taxa from decomposing wood and litter. This suggests a putative role for these aboveground plant structures as reservoirs for postfire decomposer bacteria. The results imply that inordinately frequent fires, which are commonplace in the Anthropocene, are a significant disturbance to bacterial communities and could affect the diversity of potentially important microbes from these landscapes.


Assuntos
Biodiversidade , Incêndios , Proteaceae , Bactérias/genética , Ecossistema , Plantas/microbiologia , Proteaceae/classificação
2.
Antonie Van Leeuwenhoek ; 111(2): 209-226, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28936706

RESUMO

Actinomycete bacteria have previously been reported from reproductive structures (infructescences) of Protea (sugarbush/suikerbos) species, a niche dominated by fungi in the genera Knoxdaviesia and Sporothrix. It is probable that these taxa have symbiotic interactions, but a lack of knowledge regarding their diversity and general ecology precludes their study. We determined the diversity of actinomycetes within Protea repens inflorescence buds, open inflorescences, young and mature infructescences, and leaf litter surrounding these trees. Since the P. repens habitat is fire-prone, we also considered the potential of these bacteria to recolonise infructescences after fire. Actinomycetes were largely absent from flower buds and inflorescences but were consistently present in young and mature infructescences. Two Streptomyces spp. were the most consistent taxa recovered, one of which was also routinely isolated from leaf litter. Lower colonisation rates were evident in samples from a recently burnt site. One of the most consistent taxa isolated from older trees in the unburnt site was absent from this site. Our findings show that P. repens has a distinct community of actinomycetes dominated by a few species. These communities change over time and infructescence developmental stage, season and the age of the host population. Mature infructescences appear to be important sources of inoculum for some of the actinomycetes, seemingly disrupted by fire. Increased fire frequency limiting maturation of P. repens infructescences could thus impact future actinomycete colonisation in the landscape. Streptomyces spp. are likely to share this niche with the ophiostomatoid fungi, which merits further study regarding their interactions and mode of transfer.


Assuntos
Actinobacteria/classificação , Biodiversidade , Flores/microbiologia , Proteaceae/crescimento & desenvolvimento , Proteaceae/microbiologia , Actinobacteria/isolamento & purificação , Contagem de Colônia Microbiana , Ecologia , Simbiose
3.
Fungal Biol ; 121(4): 361-393, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28317540

RESUMO

Little is known regarding the fungi, especially fungal pathogens, associated with mangroves in Africa. This includes fungi in the Botryosphaeriaceae that comprise numerous opportunistic, stress-associated pathogens often associated with trees affected by environmental and anthropogenically generated stresses, such as those affecting mangroves. We investigated the occurrence of endophytic Botryosphaeriaceae along the entire distribution of mangroves in South Africa. Asymptomatic branches were collected from ten localities and six mangrove species. Isolates resembling species of Botryosphaeriaceae were identified based on multi-gene sequence data of the internal transcribed spacer regions (ITS), including the 5.8S nrRNA, the beta-tubulin (tub2), partial translation elongation factor 1-alpha (tef1-α), and DNA-directed RNA polymerase II second largest subunit (rpb2) gene regions. Inoculation trials were conducted on healthy branches of Avicennia marina and Bruguiera gymnorrhiza to evaluate the potential pathogenicity of the collected species. Fourteen species in the Botryosphaeriaceae belonging to four genera, Botryosphaeria, Diplodia, Lasiodiplodia, and Neofusicoccum were collected, including five new species. Neofusicoccum was the most prevalent genus followed by Lasiodiplodia, with species of Diplodia and Botryosphaeria being the least frequent. The inoculation studies revealed that one of the new species, Lasiodiplodia avicenniae is highly pathogenic to A. marina and could pose a threat to the health of these trees.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Avicennia/microbiologia , Endófitos/classificação , Endófitos/isolamento & purificação , Rhizophoraceae/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Endófitos/genética , Endófitos/patogenicidade , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Polimerase II/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA , África do Sul , Tubulina (Proteína)/genética
4.
AoB Plants ; 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28013250

RESUMO

Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards, and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilise these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies, and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices.

5.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27821517

RESUMO

When non-native plants reach novel environments, they typically arrive with hidden microbiomes. In general, most of these hitchhikers remain on their co-evolved hosts, some contribute to the invasiveness of their hosts, and a small number can undergo host shifts and move onto native hosts. Invasion success can vary depending upon the different categories of fungal associates. When an invader tree relies on a fungal mutualism to survive in the new environment, there is a fundamentally lower likelihood of either the tree, or the fungus, establishing novel associations. In contrast, parasitic hitchhikers could merely use their host plants to move through the landscape and to become established on new hosts (host shifts). Evidence suggests the frequency of these host shifts is low and depends upon the fungal functional group. However, epidemics caused by invasive pathogens in native ecosystems have occurred globally. Thus, elucidating the potential for hidden non-native fungi to form novel host associations in a new environment is important for biodiversity conservation.

6.
Tree Physiol ; 36(10): 1247-1259, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27358206

RESUMO

Xylem resistance to cavitation is an important trait that is related to the ecology and survival of plant species. Vessel network characteristics, such as vessel length and connectivity, could affect the spread of emboli from gas-filled vessels to functional ones, triggering their cavitation. We hypothesized that the cavitation resistance of xylem vessels is randomly distributed throughout the vessel network. We predicted that single vessel air injection (SVAI) vulnerability curves (VCs) would thus be affected by sample length. Longer stem samples were predicted to appear more resistant than shorter samples due to the sampled path including greater numbers of vessels. We evaluated the vessel network characteristics of grapevine (Vitis vinifera L.), English oak (Quercus robur L.) and black cottonwood (Populus trichocarpa Torr. & A. Gray), and constructed SVAI VCs for 5- and 20-cm-long segments. We also constructed VCs with a standard centrifuge method and used computer modelling to estimate the curve shift expected for pathways composed of different numbers of vessels. For all three species, the SVAI VCs for 5 cm segments rose exponentially and were more vulnerable than the 20 cm segments. The 5 cm curve shapes were exponential and were consistent with centrifuge VCs. Modelling data supported the observed SVAI VC shifts, which were related to path length and vessel network characteristics. These results suggest that exponential VCs represent the most realistic curve shape for individual vessel resistance distributions for these species. At the network level, the presence of some vessels with a higher resistance to cavitation may help avoid emboli spread during tissue dehydration.


Assuntos
Populus/fisiologia , Quercus/fisiologia , Vitis/fisiologia , Xilema/fisiologia , Doenças das Plantas
7.
AoB Plants ; 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28039118

RESUMO

Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics, and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand, and manage biological invasions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...