Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132801

RESUMO

Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.

2.
ACS Appl Bio Mater ; 6(9): 3696-3705, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37579070

RESUMO

Biomaterials made of self-assembling protein building blocks are widely explored for biomedical applications, for example, as drug carriers, tissue engineering scaffolds, and functionalized coatings. It has previously been shown that a recombinant spider silk protein functionalized with a cell binding motif from fibronectin, FN-4RepCT (FN-silk), self-assembles into fibrillar structures at interfaces, i.e., membranes, fibers, or foams at liquid/air interfaces, and fibrillar coatings at liquid/solid interfaces. Recently, we observed that FN-silk also assembles into microspheres in the bulk of a physiological buffer (PBS) solution. Herein, we investigate the self-assembly process of FN-silk into microspheres in the bulk and how its progression is affected by the presence of hyaluronic acid (HA), both in solution and in a cross-linked HA hydrogel. Moreover, we characterize the size, morphology, mesostructure, and protein secondary structure of the FN-silk microspheres prepared in PBS and HA. Finally, we examine how the FN-silk microspheres can be used to mediate cell adhesion and spreading of human mesenchymal stem cells (hMSCs) during cell culture. These investigations contribute to our fundamental understanding of the self-assembly of silk protein into materials and demonstrate the use of silk microspheres as additives for cell culture applications.


Assuntos
Ácido Hialurônico , Seda , Humanos , Seda/química , Microesferas , Proteínas Recombinantes/química , Oligopeptídeos
4.
Colloids Surf B Biointerfaces ; 227: 113327, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172419

RESUMO

Mucus reduces friction between epithelial surfaces by providing lubrication in the boundary and mixed regime. Mucins, the main macromolecule, are heavily glycosylated proteins that polymerise and retain water molecules, resulting in a hydrated biogel. It is assumed that positively charged ions can influence mucin film structure by screening the electrostatic repulsions between the negatively charged glycans on mucin moieties and draw in water molecules via hydration shells. The ionic concentration can vary significantly in different mucus systems and here we show that increasing the ionic concentration in mucin films leads to an increase in lubrication between two polydimethylsiloxane surfaces at sliding contact in a compliant oral mimic. Mucins were found to bind sodium ions in a concentration-dependent manner and increased ionic concentration appears to cause mucin films to swell when assessed by Quartz Crystal hiMicrobalance with Dissipation (QCM-D) analysis. Furthermore, we determined that the removal of negatively charged sialic acid moieties by sialidase digestion resulted in reduced adsorption to hydrophilic surfaces but did not affect the swelling of mucin films with increasing ionic concentrations. Moreover, the coefficient of friction was increased with sialic acid removal, but lubrication was still increased with increasing ionic concentrations. Taken together this suggests that sialic acids are important for lubrication and may exert this through the sacrificial layer mechanism. Ionic concentration appears to influence mucin films and their lubrication, and sialic acids, at least partly, may be important for ion binding.


Assuntos
Mucinas , Ácidos Siálicos , Mucinas/química , Lubrificação , Ácido N-Acetilneuramínico , Água/química
5.
Gels ; 8(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36354626

RESUMO

Hydrogel biomaterials have found use in various biomedical applications partly due to their biocompatibility and tuneable viscoelastic properties. The ideal rheological properties of hydrogels depend highly on the application and should be considered early in the design process. Rheometry is the most common method to study the viscoelastic properties of hydrogels. However, rheometers occupy much space and are costly instruments. On the other hand, quartz crystal resonators (QCRs) are devices that can be used as low-cost, small, and accurate sensors to measure the viscoelastic properties of fluids. For this reason, we explore the capabilities of a low-cost and compact QCR sensor to sense and characterise the gelation process of hydrogels while using a low sample amount and by sensing two different crosslink reactions: covalent bonds and divalent ions. The gelation of covalently crosslinked mucin hydrogels and physically crosslinked alginate hydrogels could be monitored using the sensor, clearly distinguishing the effect of several parameters affecting the viscoelastic properties of hydrogels, including crosslinking chemistry, polymer concentrations, and crosslinker concentrations. QCR sensors offer an economical and portable alternative method to characterise changes in a hydrogel material's viscous properties to contribute to this type of material design, thus providing a novel approach.

6.
Sci Transl Med ; 14(673): eabm2417, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449601

RESUMO

Close to half of the world's pregnancies are still unplanned, reflecting a clear unmet need in contraception. Ideally, a contraceptive would provide the high efficacy of hormonal treatments, without systemic side effects. Here, we studied topical reinforcement of the cervical mucus by chitosan mucoadhesive polymers as a form of female contraceptive. Chitosans larger than 7 kDa effectively cross-linked human ovulatory cervical mucus to prevent sperm penetration in vitro. We then demonstrated in vivo using the ewe as a model that vaginal gels containing chitosan could stop ram sperm at the entrance of the cervical canal and prevent them from reaching the uterus, whereas the same gels without chitosan did not substantially limit sperm migration. Chitosan did not affect sperm motility in vitro or in vivo, suggesting reinforcement of the mucus physical barrier as the primary mechanism of action. The chitosan formulations did not damage or irritate the ewe vaginal epithelium, in contrast to nonoxynol-9 spermicide. The demonstration that cervical mucus can be reinforced topically to create an effective barrier to sperm may therefore form the technological basis for muco-cervical barrier contraceptives with the potential to become an alternative to hormonal contraceptives.


Assuntos
Muco do Colo Uterino , Quitosana , Humanos , Gravidez , Masculino , Animais , Feminino , Ovinos , Motilidade dos Espermatozoides , Sêmen , Espermatozoides , Anticoncepcionais
7.
Adv Sci (Weinh) ; 9(32): e2203898, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36104216

RESUMO

Mucus is a self-healing gel that lubricates the moist epithelium and provides protection against viruses by binding to viruses smaller than the gel's mesh size and removing them from the mucosal surface by active mucus turnover. As the primary nonaqueous components of mucus (≈0.2%-5%, wt/v), mucins are critical to this function because the dense arrangement of mucin glycans allows multivalence of binding. Following nature's example, bovine submaxillary mucins (BSMs) are assembled into "mucus-like" gels (5%, wt/v) by dynamic covalent crosslinking reactions. The gels exhibit transient liquefaction under high shear strain and immediate self-healing behavior. This study shows that these material properties are essential to provide lubricity. The gels efficiently reduce human immunodeficiency virus type 1 (HIV-1) and genital herpes virus type 2 (HSV-2) infectivity for various types of cells. In contrast, simple mucin solutions, which lack the structural makeup, inhibit HIV-1 significantly less and do not inhibit HSV-2. Mechanistically, the prophylaxis of HIV-1 infection by BSM gels is found to be that the gels trap HIV-1 by binding to the envelope glycoprotein gp120 and suppress cytokine production during viral exposure. Therefore, the authors believe the gels are promising for further development as personal lubricants that can limit viral transmission.


Assuntos
HIV-1 , Animais , Bovinos , Humanos , HIV-1/metabolismo , Herpesvirus Humano 2/metabolismo , Mucinas/metabolismo , Géis , Muco/metabolismo
8.
ACS Appl Mater Interfaces ; 14(35): 39727-39735, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36000701

RESUMO

Hydrogels of cross-linked mucin glycoproteins (Muc-gel) have shown strong immune-modulating properties toward macrophages in vitro, which are translated in vivo by the dampening of the foreign body response to implantation in mice. Beyond mucin hydrogels, other biomaterials such as sensors, electrodes, and other long-term implants would also benefit from such immune-modulating properties. In this work, we aimed to transfer the bioactivity observed for three-dimensional Muc-gels to the surface of two model materials by immobilizing mucin into thin films (Muc-film) using covalent layer-by-layer assembly. We tested how the surface immobilization of mucins affects macrophage responses compared to Muc-gels. We showed that Muc-films on soft polyacrylamide gels mimic Muc-gel in their modulation of macrophage responses with activated gene expression of inflammatory cytokines on day 1 and then dampening them on day 3. Also, the markers of polarized macrophages, M1 and M2, were expressed at the same level for macrophages on Muc-film-coated soft polyacrylamide gels and Muc-gel. In contrast, Muc-film-coated hard polystyrene led to a different macrophage response compared to Muc-gel, having no activated expression of inflammatory cytokines and a different M1 marker expression. This suggested that the substrate mechanical properties and mucin molecular configuration determined by substrate-mucin interactions affect mucin immune-modulating properties. We conclude that mucin immune-modulating properties can be transferred to materials by mucin surface immobilization but will be dependent on the substrate chemical and mechanical properties.


Assuntos
Hidrogéis , Mucinas , Animais , Materiais Biocompatíveis/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Glicoproteínas/metabolismo , Hidrogéis/química , Macrófagos/metabolismo , Camundongos , Mucina-1/metabolismo , Mucinas/metabolismo
9.
Adv Healthc Mater ; 11(2): e2101719, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710279

RESUMO

The importance of lubrication between oral surfaces provided by the salivary film is most acutely apparent when it is disrupted, a prevalent consequence of salivary gland hypofunction experienced with aging, a symptom of certain diseases, or a side effect of some medical interventions. Sufferers report difficulty with speech and oral food processing and collectively is detrimental to quality of life. Polyethylene glycol (PEG) is widely employed as a successful biocompatible boundary lubricant in engineering and biomedical applications. It is hypothesized that the immobilization of PEG to biological materials such as oral epithelial cells and tissue can mimic the salivary film and provide durable relief from the symptoms of mucosal dryness. To do so, PEG is functionalized with a sugar binding lectin (wheat germ agglutinin) to enhance epithelial adhesion through lectin-sugar interactions. Retention and lubricity are characterized on an ex vivo oral tissue tribology rig. WGA-PEG coats and retains on mucin films, oral epithelial cells, and porcine tongue tissue, and offers sustained reduction in coefficient of friction (COF). WGA-PEG could be developed into a useful topical treatment for reducing oral friction and the perception of dry mouth.


Assuntos
Saliva , Xerostomia , Animais , Lectinas/análise , Lectinas/metabolismo , Polietilenoglicóis/metabolismo , Qualidade de Vida , Saliva/metabolismo , Suínos , Xerostomia/metabolismo
10.
Biofabrication ; 13(3)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33836517

RESUMO

In vitrocancer models that can largely mimic thein vivomicroenvironment are crucial for conducting more accurate research. Models of three-dimensional (3D) culture that can mimic some aspects of cancer microenvironment or cancer biopsies that can adequately represent tumor heterogeneity are intensely used currently. Those models still lack the dynamic stress stimuli in gastric carcinoma exposed to stomach peristalsisin vivo. This study leveraged a lab-developed four-dimensional (4D) culture model by a magnetic responsive alginate-based hydrogel to rotating magnets that can mimic stress stimuli in gastric cancer (GC). We used the 4D model to culture human GC cell line AGS and SGC7901, cells at the primary and metastasis stage. We revealed the 4D model altered the cancer cell growth kinetics mechanistically by alteringPCNAandp53expression compared to the 3D culture that lacks stress stimuli. We found the 4D model altered the cancer spheroids stemness as evidenced by enhanced cancer stem cells (CD44) marker expression in AGS spheroids but the expression was dampened in SGC7901 cells. We examined the multi-drug resistance (MDR1) marker expression and found the 4D model dampened the MDR1 expression in SGC7901 cell spheroids, but not in spheroids of AGS cells. Such a model provides the stomach peristalsis mimic and is promising for conducting basic or translational GC-associated research, drug screening, and culturing patient gastric biopsies to tailor the therapeutic strategies in precision medicine.


Assuntos
Técnicas de Cultura de Células , Esferoides Celulares , Neoplasias Gástricas , Linhagem Celular Tumoral , Humanos , Peristaltismo , Microambiente Tumoral
11.
Biomacromolecules ; 22(4): 1600-1613, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33749252

RESUMO

Commercial mucin glycoproteins are routinely used as a model to investigate the broad range of important functions mucins fulfill in our bodies, including lubrication, protection against hostile germs, and the accommodation of a healthy microbiome. Moreover, purified mucins are increasingly selected as building blocks for multifunctional materials, i.e., as components of hydrogels or coatings. By performing a detailed side-by-side comparison of commercially available and lab-purified variants of porcine gastric mucins, we decipher key molecular motifs that are crucial for mucin functionality. As two main structural features, we identify the hydrophobic termini and the hydrophilic glycosylation pattern of the mucin glycoprotein; moreover, we describe how alterations in those structural motifs affect the different properties of mucins-on both microscopic and macroscopic levels. This study provides a detailed understanding of how distinct functionalities of gastric mucins are established, and it highlights the need for high-quality mucins-for both basic research and the development of mucin-based medical products.


Assuntos
Glicoproteínas , Mucinas , Animais , Glicoproteínas/metabolismo , Glicosilação , Hidrogéis , Lubrificação , Mucinas/metabolismo , Suínos
12.
ACS Nano ; 15(2): 2350-2362, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-32806031

RESUMO

Gaining control over the delivery of therapeutics to a specific disease site is still very challenging. However, especially when cytotoxic drugs such as chemotherapeutics are used, the importance of a control mechanism that can differentiate "sick" target cells from the surrounding healthy tissue is pivotal. Here, we designed a nanoparticle-based drug delivery process, which releases an active agent only in the presence of a specific trigger DNA sequence. With this strategy, we are able to initiate the release of therapeutics into the cytosol with high efficiency. Furthermore, we demonstrate how an endogenous marker (e.g., a specific miRNA sequence) that is overexpressed in the initial phases of certain cancer types can be used as a stimulus to autonomously initiate intracellular drug release-and only in cells where this pathophysiological marker is present. We expect that this precisely controlled delivery mechanism can facilitate the design of site-specific treatments for such diseases, where an overexpression of signature oligonucleotide sequences has been identified.


Assuntos
Portadores de Fármacos , Nanopartículas , DNA , Doxorrubicina , Sistemas de Liberação de Medicamentos , Mucinas
13.
ACS Appl Mater Interfaces ; 12(17): 19324-19336, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32301325

RESUMO

Mucins are multifunctional glycosylated proteins that are increasingly investigated as building blocks of novel biomaterials. An attractive feature is their ability to modulate the immune response, in part by engaging with sialic acid binding receptors on immune cells. Once assembled into hydrogels, bovine submaxillary mucins (Muc gels) were shown to modulate the recruitment and activation of immune cells and avoid fibrous encapsulation in vivo. However, nothing is known about the early immune response to Muc gels. This study characterizes the response of macrophages, important orchestrators of the material-mediated immune response, over the first 7 days in contact with Muc gels. The role of mucin-bound sialic acid sugar residues was investigated by first enzymatically cleaving the sugar and then assembling the mucin variants into covalently cross-linked hydrogels with rheological and surface nanomechanical properties similar to nonmodified Muc gels. Results with THP-1 and human primary peripheral blood monocytes derived macrophages showed that Muc gels transiently activate the expression of both pro-inflammatory and anti-inflammatory cytokines and cell surface markers, for most makers with a maximum on the first day and loss of the effect after 7 days. The activation was sialic acid-dependent for a majority of the markers followed. The pattern of gene expression, protein expression, and functional measurements did not strictly correspond to M1 or M2 macrophage phenotypes. This study highlights the complex early events in macrophage activation in contact with mucin materials and the importance of sialic acid residues in such a response. The enzymatic glyco-modulation of Muc gels appears as a useful tool to help understand the biological functions of specific glycans on mucins which can further inform on their use in various biomedical applications.


Assuntos
Hidrogéis/farmacologia , Fatores Imunológicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Mucinas/farmacologia , Animais , Bovinos , Citocinas/genética , Endocitose/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/química , Fatores Imunológicos/química , Macrófagos/metabolismo , Mucinas/química , Ácido N-Acetilneuramínico/química , Neuraminidase/química , Fagocitose/efeitos dos fármacos , Polissacarídeos/química , Células THP-1
14.
Colloids Surf B Biointerfaces ; 187: 110614, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31753616

RESUMO

In the human body, mucin glycoproteins efficiently reduce friction between tissues and thereby protect the mucosa from mechanical damage. Mucin lubricity is closely related to their molecular structure: it has been demonstrated previously that the hydrophobic termini of mucins critically contribute to their lubricity. If and how intrinsic sources of negative charge in mucins, e.g., sulfated glycans and sialic acid residues, are relevant for the tribological behavior of mucin solutions has, however, not been addressed yet. In this manuscript, we show that the removal of either sialic acid or sulfate groups, which comprise only a minor amount of the total molecular weight, from MUC5B drastically reduces its lubricity. For MUC5AC solutions, however, this effect only occurs once mucin-associated DNA is removed as well. We find that neither the hydration state nor the average conformation of mucins adsorbed onto hydrophilic or hydrophobic surfaces is affected by the removal of anionic sugars. Instead, our data suggests that a loss of anionic sugars mainly influences the dynamic adsorption process of mucins onto both hydrophilic and hydrophobic surfaces.


Assuntos
Lubrificação , Mucinas/química , Polissacarídeos/química , Adsorção , Animais , Ânions , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Ácido N-Acetilneuramínico/química , Conformação Proteica , Soluções , Sulfatos/química , Suínos , Água/química
15.
ACS Appl Mater Interfaces ; 11(50): 46572-46584, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31725264

RESUMO

The many interesting properties of chitosan polysaccharides have prompted their extensive use as biomaterial building blocks, for instance as antimicrobial coatings, tissue engineering scaffolds, and drug delivery vehicles. The translation of these chitosan-based systems to the clinic still requires a deeper understanding of their safety profiles. For instance, the widespread claim that chitosans are spermicidal is supported by little to no data. Herein, we thoroughly investigate whether chitosan oligomer (CO) molecules can impact the functional and structural features of human spermatozoa. By using a large number of primary sperm cell samples and by isolating the effect of chitosan from the effect of sperm dissolution buffer, we provide the first realistic and complete picture of the effect of chitosans on sperms. We found that CO binds to cell surfaces or/and is internalized by cells and affected the average path velocity of the spermatozoa, in a dose-dependent manner. However, CO did not affect the progressive motility, motility, or sperm morphology, nor did it cause loss of plasma membrane integrity, reactive oxygen species production, or DNA damage. A decrease in spermatozoa adenosine triphosphate levels, which was especially significant at higher CO concentrations, points to possible interference of CO with mitochondrial functions or the glycolysis processes. With this first complete and in-depth look at the spermicidal activities of chitosans, we complement the complex picture of the safety profile of chitosans and inform on further use of chitosans in biomedical applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Mitocôndrias/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Trifosfato de Adenosina/química , Materiais Biocompatíveis/efeitos adversos , Quitosana/efeitos adversos , Quitosana/química , Dano ao DNA/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Espécies Reativas de Oxigênio/química
16.
Langmuir ; 34(45): 13615-13625, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30350704

RESUMO

Mucins are high molar mass glycoproteins that assume an extended conformation and can assemble into mucus hydrogels that protect our mucosal epithelium. In nature, the challenging task of generating a mucus layer, several hundreds of micrometers in thickness, from micrometer-sized cells is elegantly solved by the condensation of mucins inside vesicles and their on-demand release from the cells where they suddenly expand to form the extracellular mucus hydrogel. We aimed to recreate and control the process of compaction for mucins, the first step toward a better understanding of the process and creating biomimetic in vivo delivery strategies of macromolecules. We found that by adding glycerol to the aqueous solvent, we could induce drastic condensation of purified mucin molecules, reducing their size by an order of magnitude down to tens of nanometers in diameter. The condensation effect of glycerol was fully reversible and could be further enhanced and partially stabilized by cationic cross-linkers such as calcium and polylysine. The change of structure of mucins from extended molecules to nano-sized particles in the presence of glycerol translated into macroscopic rheological changes, as illustrated by a dampened shear-thinning effect with increasing glycerol concentration. This work provides new insight into mucin condensation, which could lead to new delivery strategies mimicking cell release of macromolecules condensed in vesicles such as mucins and heparin.


Assuntos
Mucinas/química , Nanopartículas/química , Animais , Cálcio/química , Glicerol/química , Mucinas/isolamento & purificação , Tamanho da Partícula , Polilisina/química , Conformação Proteica/efeitos dos fármacos , Solventes/química , Suínos , Viscosidade
17.
Biomater Sci ; 6(9): 2282-2297, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30047553

RESUMO

Mucins are large glycoproteins that are ubiquitous in the animal kingdom. Mucins coat the surfaces of many cell types and can be secreted to form mucus gels that assume important physiological roles in many animals. Our growing understanding of the structure and function of mucin molecules and their functionalities has sparked interest in investigating the use of mucins as building blocks for innovative functional biomaterials. These pioneering studies have explored how new biomaterials can benefit from the barrier properties, hydration and lubrication properties, unique chemical diversity, and bioactivities of mucins. Owing to their multifunctionality, mucins have been used in a wide variety of applications, including as antifouling coatings, as selective filters, and artificial tears and saliva, as basis for cosmetics, as drug delivery materials, and as natural detergents. In this review, we summarize the current knowledge regarding key mucin properties and survey how they have been put to use. We offer a vision for how mucins could be used in the near future and what challenges await the field before biomaterials made of mucins and mucin-mimics can be translated into commercial products.


Assuntos
Materiais Biocompatíveis , Mucinas , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Humanos , Lubrificação , Mucinas/química , Mucinas/metabolismo
18.
Biomacromolecules ; 19(8): 3268-3279, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29932649

RESUMO

Mucoadhesion is defined as the adhesion of a material to the mucus gel covering the mucous membranes. The mechanisms controlling mucoadhesion include nonspecific electrostatic interactions and specific interactions between the materials and the mucins, the heavily glycosylated proteins that form the mucus gel. Mucoadhesive materials can be used to develop mucosal wound dressings and noninvasive transmucosal drug delivery systems. Spider silk, which is strong, biocompatible, biodegradable, nontoxic, and lightweight would serve as an excellent base for the development of such materials. Here, we investigated two variants of the partial spider silk protein 4RepCT genetically engineered in order to functionalize them with mucoadhesive properties. The pLys-4RepCT variant was functionalized with six cationically charged lysines, aiming to provide nonspecific adhesion from electrostatic interactions with the anionically charged mucins, while the hGal3-4RepCT variant was genetically fused with the Human Galectin-3 Carbohydrate Recognition Domain which specifically binds the mucin glycans Galß1-3GlcNAc and Galß1-4GlcNAc. First, we demonstrated that coatings, fibers, meshes, and foams can be readily made from both silk variants. Measured by the adsorption of both bovine submaxillary mucin and pig gastric mucin, the newly produced silk materials showed enhanced mucin binding properties compared with materials of wild-type (4RepCT) silk. Moreover, we showed that pLys-4RepCT silk coatings bind mucins through electrostatic interactions, while hGal3-4RepCT silk coatings bind mucins through specific glycan-protein interactions. We envision that the two new mucoadhesive silk variants pLys-4RepCT and hGal3-4RepCT, alone or combined with other biofunctional silk proteins, constitute useful new building blocks for a range of silk protein-based materials for mucosal treatments.


Assuntos
Galectinas/química , Seda/química , Adesivos/química , Galectinas/genética , Humanos , Mucinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/genética , Eletricidade Estática
19.
Biomacromolecules ; 19(3): 872-882, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29451983

RESUMO

The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases. Unfortunately, there are no effective strategies that reinforce the mucus barrier properties to recover or enhance its ability to protect the epithelium. Herein, we describe a mucus engineering approach that addresses this issue where we physically cross-link the mucus gel with low molar mass chitosan variants to reinforce its barrier functions. We tested the effect of these chitosans on mucus using in-lab purified porcine gastric mucins, which mimic the native properties of mucus, and on mucus-secreting HT29-MTX epithelial cell cultures. We found that the lowest molar mass chitosan variant (degree of polymerization of 8) diffuses deep into the mucus gels while physically cross-linking the mucin polymers, whereas the higher molar mass chitosan variants (degree of polymerization of 52 and 100) interact only superficially. The complexation resulted in a tighter mucin polymer mesh that slowed the diffusion of dextran polymers and of the cholera toxin B subunit protein through the mucus gels. These results uncover a new use for low molar mass mucoadhesive polymers such as chitosans as noncytotoxic mucosal barrier enhancers that could be valuable in the prevention and treatment of mucosal diseases.


Assuntos
Quitosana , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/metabolismo , Animais , Linhagem Celular , Quitosana/farmacocinética , Quitosana/farmacologia , Toxina da Cólera/farmacocinética , Toxina da Cólera/farmacologia , Dextranos/farmacocinética , Dextranos/farmacologia , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia , Suínos
20.
Recurso na Internet em Inglês | LIS - Localizador de Informação em Saúde | ID: lis-45845

RESUMO

The report analyses the potential impact of a transition towards Open Science on the stakeholders of the research ecosystem. The EU can accelerate the transition towards Open Science thanks to its unique position as funder and policy maker. A three step program is suggested that will: 1) support the on-going transformation; 2) make systemic to open the way to fully implemented Open Science; and 3) unlock the societal and economic value of Open Science


Assuntos
Acesso à Informação , Mídias Sociais , Formulação de Políticas , Conhecimento , Ciência/educação , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...