Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(6): 3614-3630, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246549

RESUMO

Condensed tannins (CT) are plant polyphenols that can affect feed digestibility and are potentially able to reduce enteric CH4 emissions in ruminants. In this in vivo trial with 8 lactating goats, we investigated the effects of 4 levels of inclusion of a commercial CT extract from quebracho (0%, 2%, 4%, and 6% on dry matter basis; CON, Q2, Q4, and Q6, respectively). The experimental design was a repeated 4 × 4 Latin square with 28-d periods (24 d of diet adaptation and 4 d of sample collection) using metabolic cages and 4 open-circuit respiration chambers. The inclusion of CT in the diets did not affect the dry matter intake (DMI) but caused a linear decrease in diet digestibility, with reductions up to -11% for dry matter, -21% for crude protein (CP), -23% for α-amylase- and sodium sulfite-treated neutral detergent fiber corrected for insoluble ash (aNDFom), and -13% for gross energy, when comparing the Q6 and CON diets. However, ruminal total volatile fatty acids (VFA) concentration was not affected by CT, although there were changes in VFA proportions. Milk yield was highest for Q4 (3,371 g/d) and lowest for Q6 (3,066 g/d). In terms of milk composition, CT induced a linear reduction of fat and CP concentrations. The reduction in CP digestibility resulted in a linear reduction in the milk urea level, up to -37% with Q6. Positively, CT linearly reduced the somatic cells count expressed as linear score. The feed efficiency was linearly decreased by CT inclusion. Furthermore, a shift from urinary to fecal nitrogen excretion was observed with CT. The retained nitrogen was always negative (on average -1.93 g/d). The CH4 yield (on average 19.2 g of CH4/kg DMI) was linearly reduced by CT inclusion, up to -18% with Q6. Regarding the CH4 intensity, CT induced a linear reduction when expressed per kilogram of milk, but not per kilogram of fat and protein-corrected milk. Moreover, the CH4 production per kilogram of digestible aNDFom was linearly increased by CT. The metabolizable energy intake (MEI) was not affected by the treatments, but the metabolizability (q = MEI/gross energy intake) was reduced as CT inclusion increased. From the results of the present study, it turned out that CT have a negative impact on feed digestibility and feed use efficiency. Condensed tannins can lower CH4 emissions from ruminants; however, the main mechanism of action is likely the decrease in feed digestibility. Furthermore, CT did not improve the N use efficiency. According to these findings, the positive environmental impacts of CT are only related to the shift from urinary to fecal N excretion.


Assuntos
Ração Animal , Dieta , Digestão , Cabras , Lactação , Metano , Leite , Nitrogênio , Animais , Feminino , Leite/química , Dieta/veterinária , Digestão/efeitos dos fármacos , Metano/metabolismo , Nitrogênio/metabolismo , Proantocianidinas/farmacologia , Metabolismo Energético
2.
JDS Commun ; 4(3): 181-185, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37360129

RESUMO

The study aimed to evaluate Intergovernmental Panel on Climate Change (IPCC) Tier 2 (2006 and 2019) to predict enteric CH4 emissions from lactating cows fed Mediterranean diets. The effects of the CH4 conversion factor (Ym; CH4 energy loss as a percentage of gross energy intake) and digestible energy (DE) of the diet were evaluated as model predictors. A data set was created using individual observations derived from 3 in vivo studies on lactating dairy cows housed in respiration chambers and fed diets typical of the Mediterranean region based on silages and hays. Five models using different Ym and DE were evaluated following a Tier 2 approach: (1) average values of Ym (6.5%) and DE (70%) from IPCC (2006); (2) average value of Ym (5.7%) and DE (70.0%) from IPCC (2019; 1YM); (3) Ym = 5.7% and DE measured in vivo (1YMIV); (4) Ym = 5.7 or 6.0%, depending on dietary NDF, and DE = 70% (2YM); and (5) Ym = 5.7 or 6.0%, depending on dietary NDF, and DE measured in vivo (2YMIV). Finally, a Tier 2 model for Mediterranean diets (MED) was derived from the Italian data set (Ym = 5.58%; DE = 69.9% for silage-based diets and 64.8% for hay-based diets) and validated on an independent data set of cows fed Mediterranean diets. The most accurate models tested were 2YMIV, 2YM, and 1YMIV with predictions of 384, 377, and 377 (g of CH4/d), respectively, versus the in vivo value of 381. The most precise model was 1YM (slope bias = 1.88%; r = 0.63). Overall, 1YM showed the highest concordance correlation coefficient value (0.579), followed by 1YMIV (0.569). Cross-validation on an independent data set of cows fed Mediterranean diets (corn silage and alfalfa hay) resulted in concordance correlation coefficient of 0.492 and 0.485 for 1YM and MED, respectively. The prediction of MED (397) was more accurate than 1YM (405) in comparison with the corresponding in vivo value of 396 g of CH4/d. The results of this study showed that the average values proposed by IPCC (2019) can adequately predict CH4 emissions from cows fed typical Mediterranean diets. However, the use of specific factors for the Mediterranean area, such as DE, improved the accuracy of the models.

3.
Animal ; 15(11): 100358, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34634751

RESUMO

The global consumption, notably in developing countries, and production of beef are increasing continuously, and this requires the industry to improve performance and to reduce the environmental impact of the production chain. Since the improvement in efficiency and the highest impacts occur at farm level, it is appropriate to focus on the profitability and environmental sustainability of these enterprises. In many areas of the world, beef production is economically and socially relevant because it accounts for a significant portion of the agricultural production and represents a vital economic activity in mountain and hill districts of many regions, where few alternatives for other agricultural production exist. Due to the important role in the agricultural and food economy worldwide, the future of the beef industry is linked to the reduction of ecological impacts, mainly adopting the agroecological mitigation practices, and the simultaneous improvement of production performances and of product quality. This review analyses the technical and managerial solutions currently available to increase the efficiency of the beef industry and, at the same time, to reduce its environmental impacts in response to the growing concerns and awareness of citizens and consumers.


Assuntos
Agricultura , Meio Ambiente , Animais , Bovinos , Fazendas , Alimentos
4.
J Dairy Sci ; 103(9): 8048-8061, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622607

RESUMO

Eight lactating Italian Friesian cows were housed in individual respiration chambers in a repeated Latin square design to determine their dry matter intake (DMI) and their milk and methane production, as well as to collect the total feces and urine to determine the N and energy balances. Four diets, based on the following forages (% of dry matter, DM), were tested: corn silage (CS, 49.3), alfalfa silage (AS, 26.8), wheat silage (WS, 20.0), and a typical hay-based Parmigiano Reggiano cheese production diet (PR, 25.3 of both alfalfa and Italian ryegrass hay). The greatest DMI was observed for cows fed PR (23.4 vs. 20.7 kg/d, the average of the other 3 diets). The DM digestibility was lower for PR (64.5 vs. 71.7%, the average of the other diets). The highest ash-free neutral detergent fiber digestibility values were obtained for CS (50.7%) and AS (47.4%). In the present study, no differences in milk production were observed between diets, although PR showed a higher milk yield trend. The highest milk urea N concentration (mg/dL) was found for the cows fed the WS diet (13.8), and the lowest was observed for the cows fed AS (9.24). The highest milk urea N concentration for the cows fed WS was also correlated with the highest urinary N excretion (g/d), which was found for the cows fed that same diet (189 vs. 147 on average for the other diets). The protein digestibility was higher for the cows fed the CS and WS diets (on average 68.5%) than for the cows fed AS and PR (on average 57.0%); dietary soybean inclusion was higher for CS and WS than for AS and PR. The rumen fermentation pattern was affected by the diet; the cows fed the PR diet showed a higher rumen pH and decreased propionate production than those fed CS, due to the lower nonfiber carbohydrate content and higher ash-free neutral detergent fiber content of the PR diet than the CS diet. Feeding cows with PR diet increased the acetate:propionate ratio in comparison with the CS diet (3.30 vs. 2.44 for PR and CS, respectively). Cows fed the PR diet produced a greater daily amount of methane and had a greater methane energy loss (% of digestible energy intake) than those fed the CS diet (413 vs. 378 g/d and 8.67 vs. 7.70%), but no differences were observed when methane was expressed as grams per kilogram of DMI or grams per kilogram of milk. The PR diet resulted in a smaller net energy for lactation content than the CS diet (1.36 vs. 1.70 Mcal/kg of DM for the PR and CS diets, respectively). Overall, our research suggests that a satisfactory milk production can be attained by including different high-quality forages in balanced diets without any negative effect on milk production or on the methane emissions per kilogram of milk.


Assuntos
Dieta/veterinária , Metabolismo Energético/fisiologia , Lactação/fisiologia , Metano/metabolismo , Nitrogênio/metabolismo , Animais , Bovinos , Fibras na Dieta/metabolismo , Fezes/química , Feminino , Fermentação , Medicago sativa/metabolismo , Leite/química , Rúmen/metabolismo , Triticum/metabolismo , Urina/química , Zea mays/metabolismo
5.
J Dairy Sci ; 103(5): 4863-4873, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113778

RESUMO

The aim of the present study was to evaluate, through a survey conducted on commercial farms, the global warming potential (GWP) of different lactating cow total mixed rations (TMR) and to identify the best dietary strategies to increase feed efficiency (FE) and reduce enteric CH4 emission. A total of 171 dairy herds were selected: data about dry matter intake (DMI), lactating cow TMR composition, and milk production and composition were provided by farmers. Diet GWP (kg of CO2 equivalents; CO2eq) was calculated as sum of GWP (kg of CO2eq) of each included ingredient, considering inputs needed at field level, feed processing, and transport. For soybean solvent meal, land use change was included in the assessment. Enteric methane production (g/d) was estimated [using the equation CH4 (g/d) = 2.54 + 19.14 × DMI] to calculate CH4 emission for kilograms of fat- and protein-corrected milk (FPCM). The data set was analyzed by generalized linear model and logistic analysis using SAS 9.4 (SAS Institute Inc., Cary, NC). The frequency distribution showed wide variation among farms for GWP (kg of CO2eq) of TMR: approximately 25% of the surveyed farms showed a diet GWP of 15 kg of CO2eq, 20% showed a GWP of 13 kg of CO2eq, and 16.7% showed a GWP of 17 kg of CO2eq. The variation among farms was due to the feedstuffs used. Among feedstuffs, soybean meal (SBM) had the highest correlation with the GWP of the TMR as shown by the following equation: TMR GWP (kg of CO2eq) = 2.49 × kg of SBM + 6.9 (R2 = 0.547). Moreover, diets with inclusion of SBM >15% of dry matter (DM) did not result in higher milk production than diets with a lower inclusion of SBM (≤15%). Average daily milk production of cows was 29.8 [standard deviation (SD) 4.83] kg with fat and protein contents of 3.86% (SD 0.22) and 3.40% (SD 0.14), respectively. The average DMI (kg/d) of lactating cows was 22.3 (SD 2.23). Logistic analysis demonstrated that corn silage ≤30% of diet DM was associated with higher FE. Almost 50% of farms had an average value of 15.0 g of CH4/kg of FPCM and about 30% of farms had an average of 12.5 g of CH4/kg of FPCM. The results demonstrated that lower enteric CH4 production was related to inclusion (% of diet DM) of ≤12% alfalfa hay and >30% corn silage. Diets with >34% neutral detergent fiber had higher CH4 production (>14.0 g/kg of FPCM) than those with lower neutral detergent fiber content. In contrast, lower enteric CH4 production (≤14.0 g/kg of FPCM) was related to diets characterized by net energy of lactation (NEL) >1.61 Mcal/kg and >4% ether extract. The variability in TMR GWP shows significant potential for reducing the GWP of a diet through choice and inclusion levels of ingredients (mainly SBM) and the possibility of decreasing methane enteric emission associated with milk production on a commercial scale.


Assuntos
Ração Animal , Bovinos/metabolismo , Dieta/veterinária , Lactação , Metano/metabolismo , Animais , Feminino , Itália , Leite , Rúmen/metabolismo , Silagem , Glycine max , Inquéritos e Questionários , Zea mays
6.
J Dairy Sci ; 98(1): 357-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465540

RESUMO

The aim of this study was to evaluate the effects of diets with different starch concentrations and fish oil (FO) supplementation on lactation performance, in vivo total-tract nutrient digestibility, N balance, and methane (CH4) emissions in lactating dairy cows. The experiment was conducted as a 4×4 Latin square design with a 2×2 factorial arrangement: 2 concentrations of dietary starch [low vs. high: 23.7 and 27.7% on a dry matter (DM) basis; neutral detergent fiber/starch ratios: 1.47 and 1.12], the presence or absence of FO supplement (0.80% on a DM basis), and their interaction were evaluated. Four Italian Friesian cows were fed 1 of the following 4 diets in 4 consecutive 26-d periods: (1) low starch (LS), (2) low starch plus FO (LSO), (3) high starch (HS), and (4) high starch plus FO (HSO). The diets contained the same amount of forages (corn silage, alfalfa and meadow hays). The starch concentration was balanced using different proportions of corn meal and soybean hulls. The cows were housed in metabolic stalls inside open-circuit respiration chambers to allow measurement of CH4 emission and the collection of separate urine and feces. No differences among treatments were observed for DM intake. We observed a trend for FO to increase milk yield: 29.2 and 27.5kg/d, on average, for diets with and without FO, respectively. Milk fat was affected by the interaction between dietary starch and FO: milk fat decreased only in the HSO diet. Energy-corrected milk (ECM) was affected by the interaction between starch and FO, with a positive effect of FO on the LS diet. Fish oil supplementation decreased the n-6:n-3 ratio of milk polyunsaturated fatty acids. High-starch diets negatively influenced all digestibility parameters measured except starch, whereas FO improved neutral detergent fiber digestibility (41.9 vs. 46.1% for diets without and with FO, respectively, and ether extract digestibility (53.7 vs. 67.1% for diets without and with FO, respectively). We observed a trend for lower CH4 emission (g/d) and intensity (g/kg of milk) with the high-starch diets compared with the low-starch diets: 396 versus 415g/d on average, respectively, and 14.1 versus 14.9g/kg of milk, respectively. Methane intensity per kilogram of ECM was affected by the interaction between starch and FO, with a positive effect of FO for the LS diet: 14.5 versus 13.3g of CH4/kg of ECM for LS and LSO diets, respectively.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Leite/metabolismo , Amido/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão , Feminino , Lactação/fisiologia , Medicago sativa , Metano/metabolismo , Metano/urina , Leite/química , Silagem , Zea mays
7.
J Anim Sci ; 92(1): 211-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24243899

RESUMO

The aim was to evaluate 2 levels of dietary inclusion of chopped whole-ear corn silage (WECS) on energy and nutrient utilization, growth, and slaughter performances of heavy pigs. Two in vivo experiments were conducted to determine digestibility and metabolic utilization of WECS using 18 barrows weighing 118 ± 8 kg BW on average, metabolic cages and respiration chambers (Exp. 1), and the effect of WECS on the growth performance and carcass traits on 42 barrows from 90 to 170 kg BW (Exp. 2). In both experiments, pigs were fed 3 experimental diets: a control diet (CON) containing cereal meals, extracted soybean meal, and wheat bran (80%, 9%, and 8% of DM, respectively) and 2 diets containing 15% (15WECS) or 30% WECS (30WECS) on a DM basis in place of wheat bran and corn meal. The diets were prepared daily by mixing the WECS to a suitable compound feed. Feed intake was always restricted to allow a daily DMI of 7.2% BW(0.75) in Exp. 1 and from 8.0% to 6.5% BW(0.75) in Exp. 2. Diets had similar NDF contents (15.2% to 15.8% of DM), and WECS inclusion resulted in a slight reduction in CP content (from 14.0% to 13.6% of DM) and a considerable decrease in P content (from 0.47% to 0.30% of DM). Digestibility of OM, CP, and fat was similar among diets, whereas P digestibility was lower (P < 0.05) for the 30WECS diet (33.5%) in comparison with the CON and 15WECS diets (45.5% and 44.1%, respectively). Nitrogen lost in feces and urine and N retained were not different among diets, whereas P retained decreased with the increase of WECS (5.4, 3.7, and 2.2 g/d for the CON, 15WECS, and 30WECS diets, respectively; P < 0.05). No difference among diets was observed for energy balance. The WECS contained 13.48 MJ ME and 9.39 MJ NE/kg DM. In Exp. 2, feed intake was not depressed by WECS inclusion, and the ADG for the whole experiment was not different among dietary treatments (from 737 to 774 g/d). Fecal pH was lower (P < 0.05) for the WECS diets than the control diet (7.10 and 7.00 vs. 7.40) and for the sampling at 150 kg BW than that at 130 and 110 kg BW (6.96 vs. 7.29 and 7.24). At slaughter, lean percentage in the carcass was lower in the 30WECS diet than those of the other 2 diets (46.8% vs. 48.3% and 48.6%, P = 0.05). The overall experimental data obtained in both trials indicate that substitution of wheat bran and corn meal for WECS (up to 30% of DM) does not affect, with the exception of P utilization and carcass leanness, energy and nutrient utilization and performance of heavy pigs in the last phase of growing.


Assuntos
Digestão , Carne/análise , Silagem/análise , Sus scrofa/fisiologia , Zea mays/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fibras na Dieta/metabolismo , Masculino , Distribuição Aleatória , Sus scrofa/crescimento & desenvolvimento
8.
J Dairy Sci ; 95(8): 4457-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22818460

RESUMO

Total mixed rations containing corn (CS), whole plant grain sorghum (WPGS), or forage sorghum (FS) silages were fed to 6 primiparous Italian Friesian cows to determine the effects on lactation performance, nutrient digestibility, and N balance. Furthermore, the relationship between in vivo total-tract neutral detergent fiber (NDF) digestibility (ttNDFD) and the ttNDFD derived by the Cornell Net Carbohydrate and Protein System (CNCPS) model was assessed. Cows were assigned to 1 of 3 diets in a replicated 3 × 3 Latin square with 28-d periods. The experimental treatment was silage type and 3 different silages were included in the diets. The diets were formulated to be iso-NDF. Accordingly, each diet was formulated to contain 41.5% CS silage, 36.7% WPGS silage, or 28.0% FS silage, on a DM basis. Starch content was balanced by adding the appropriate amount of corn meal. Separate collection of total urine and feces was performed. Dietary forages were analyzed for in vitro NDF digestibility (6 and 24h of incubation) to predict fiber digestion rate with 2 NDF pools (digestible and indigestible). Rumen digestibility of the potentially digestible NDF pool was predicted using CNCPS version 6.1, using the in vitro forage fiber digestion rate. The ttNDFD was predicted assuming that intestinal digestibility of the NDF amount escaping rumen digestion was 20%, according to the CNCPS model. Dry matter intake was decreased by approximately 1.8 kg/d in cows fed the FS diet compared with the other diets, probably for the greater particle size of FS diet. Hence, milk yield (kg/d) was lowest for FS (23.6), intermediate for WPGS (24.6), and highest for the CS diet (25.4). Milk urea N (mg/dL) was highest for FS (12.9), intermediate for WPGS (11.9), and lowest for CS (10.7) diet. In vivo ttNDFD (%) was 51.4 (CS), 48.6 (WPGS), and 54.1 (FS); this was probably due to a higher retention time of FS diet in the rumen rather than to a better quality of the FS silage, as confirmed by in situ and in vitro results. Urinary N excretion (% N intake) was highest for FS (31.8), intermediate for WPGS (29.3), and lowest for the CS (27.5) diet. The predicted ttNDFD (37.7, 36.3, and 39.5% for CS, WPGS, and FS, respectively) were lower than the in vivo results. Providing an adequate starch supplementation, whole plant grain sorghum silage can replace corn silage in dairy cows TMR. Forage sorghum silage had rumen NDF digestibility comparable to the other silages; however, it had a negative effect on dry matter intake and milk production, probably due to an inadequate effect of processing.


Assuntos
Bovinos/metabolismo , Fibras na Dieta/metabolismo , Leite/metabolismo , Silagem , Sorghum , Zea mays , Fenômenos Fisiológicos da Nutrição Animal , Animais , Digestão/fisiologia , Fezes/química , Feminino , Lactação , Análise dos Mínimos Quadrados , Nitrogênio/urina
9.
J Dairy Sci ; 89(12): 4736-46, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106105

RESUMO

Two experiments were conducted on alfalfa to investigate the effects of the addition of commercial chestnut hydrolyzable tannin at ensiling on 1) silage fermentation quality in lab-scale silos and protein degradation in the rumen, and 2) silage fermentation quality and proteolysis in bale silages. Wilted alfalfa was prepared with 4 tannin levels (0, 2, 4, and 6% on a dry matter (DM) basis; T0, T1, T2, T3, respectively) and ensiled in lab-scale silos. Silages (33% DM) were analyzed for fermentation quality, protein rumen degradability in situ, and organic matter digestibility in vitro through gas production after 120 d of conservation. Wilted alfalfa containing 0 and 4% tannin (T0 and T2) was harvested at 40% DM (wilting level I) and 53% DM (wilting level II) for bale (600 mm diameter) silage. Silages were analyzed for fermentation quality after 78 d of conservation. All the silages were well fermented with no butyric acid. Lab-scale silages showed reductions in ammonia, nonprotein nitrogen (NPN) and DM losses in T2 and T3 treatments, while the fermentation acid profiles were unaffected. In experiment 1, the untreated silage (T0) had the highest protein degradability after being incubated in the rumen. The addition of tannin reduced crude protein ruminal disappearance in a dose-dependent manner. However, the tannin reduced the organic matter digestibility by 5.1% for all of the tannin addition levels. The tannin positively affected the silage quality in the round bale silages, in particular reducing ammonia and NPN in the lowest wilting level. In both experiments, T2 treatment reduced proteolysis without any influence of DM on the binding reaction and reduced the NPN by 15% in comparison to the control.


Assuntos
Bovinos/metabolismo , Fermentação , Medicago sativa/metabolismo , Silagem/análise , Taninos , Amônia/análise , Animais , Digestão/fisiologia , Feminino , Mucosa Intestinal/metabolismo , Medicago sativa/química , Nitrogênio/análise , Proteínas/metabolismo , Rúmen/metabolismo , Taninos/metabolismo , Taninos/farmacologia , Fatores de Tempo
10.
J Dairy Sci ; 84(11): 2450-9, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11768086

RESUMO

The objective of the experiment was to compare a silage-based control diet (C) with a nonforage diet (NF) in dairy goats throughout lactation in terms of animal performance and energy utilization. Eight Saanen goats were divided into two groups and fed C or NF, a commercial blend that included sunflower meal, cassava, coconut meal, and whole cottonseeds as the main ingredients that was characterized by a small particle size and a high crude protein content. In early, mid, and late lactation (44, 100, and 219 days in milk) the goats were individually tested for dry matter intake (DMI), digestibility, milk yield and composition, milk renneting properties, rumen and plasma parameters, and nitrogen and energy utilization (open circuit respiration chambers). During early and mid lactation, the NF fed goats had a very high DMI: 2946 and 2915 g/d, respectively. Nevertheless, milk yield was similar for the two treatments: 4369 vs. 4342 and 3882 vs. 3841 g/d for goats fed diets C and NF during the first and second periods, respectively. Milk fat content was not statistically different between the two diets. The protein content and rheological parameters of milk were similar for the two diets. Nonprotein nitrogen and urea levels in milk of goats fed NF were significantly higher than goats fed C. Ruminal ammonia and plasma urea nitrogen were also significantly increased by diet NF, due to its high protein content. Plasma glucose, beta-hydroxybutyrate, and nonesterified fatty acids and ruminal volatile fatty acids were not influenced by dietary treatment. Dietary NF significantly decreased energy digestibility (74.5 vs. 65.8%, on average for the lactation, for C and NF, respectively) and had a significantly lower metabolizability (metabolizable energy/intake energy; 66.6 vs 58.0%, on average); however, the efficiency of utilization of metabolizable energy was unaffected by the diet. In conclusion, goats were fed a nonforage diet during the entire lactation without detrimental effect on their health and productive performance.


Assuntos
Ração Animal/análise , Cabras/fisiologia , Leite/metabolismo , Nitrogênio/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Peso Corporal , Ingestão de Energia , Metabolismo Energético , Feminino , Lactação , Leite/química , Fatores de Tempo
11.
J Dairy Sci ; 84(11): 2494-502, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11768091

RESUMO

The effect of alfalfa ensiled in bunker silos at high moisture [HM, 34% dry matter (DM)] and low moisture (LM, 56% DM) content on milk production and Grana Padano cheese quality was studied. Forty Italian Friesian lactating cows were allotted to two groups and fed, in a crossover design experiment, two corn silage-based diets containing 27% of the total DM as HM or LM. Each of the two periods included 10 d of adaptation and 3 experimental weeks. Forage was cut in the mid-vegetative stage with, on average, 34% neutral detergent fiber and 19% crude protein (DM basis). The two alfalfa silages showed a different fermentation pattern with 4.04 and 1.25% of lactic acid, 1.95 and 0.42% of acetic acid, 9.1 and 4.8% of total N ammonia-N for HM and LM, respectively. No butyric acid was found. Clostridial spores and yeast showed no growth in both silages except in the first 2 wk of the experiment where slight aerobic deterioration occurred. The HM treatment resulted in slightly lower DM intake (19.3 vs. 19.9 kg/d) and milk protein content (3.33 vs. 3.38%), higher milk fat content (3.56 vs. 3.37%), and 4% fat-corrected milk (25.7 vs. 24.4 kg/d). Totally, 38 cheeses obtained from over 19 tons of milk with an average yield efficiency of 6.8%, were produced. The milk renneting and microbiological properties and the cheese quality were not significantly different between treatments. However, both treatments had on average 40% of low quality (butyric fermentation) cheeses observed mainly in the first 2 wk of the experiment, when the number of clostridial spores found in alfalfa silages was significantly higher than in the subsequent weeks. The data obtained suggest that the microbial quality of milk depends more on careful management and monitoring all of the steps in milk production, from silage harvest through to cheese making, than on the moisture level of alfalfa silage, provided that the latter is in a range of 35 to 55% DM.


Assuntos
Bovinos/fisiologia , Queijo/normas , Leite/metabolismo , Animais , Bovinos/metabolismo , Estudos Cross-Over , Detergentes , Fibras na Dieta/administração & dosagem , Fibras na Dieta/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Lactação , Medicago sativa/metabolismo , Leite/química , Silagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...