Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260432

RESUMO

Post-translational modifications (PTMs) and splicing are known to be important regulatory processes for controlling protein function and activity. However, there have been limitations in analyzing the interplay of alternative splicing and PTMs, which stems from the deep differences in genomic and proteomic databases. In this work, we bridged the protein- and genome-centric world views to map PTMs to genomic locations for subsequent projection of PTMs onto alternative isoforms. We then performed a systematic analysis of the diversification of PTMs by alternative splicing, including exploration of the modification-specific rates of inclusion across isoforms and how often the regulatory sequences directly flanking a PTM are impacted by splicing, which might indicate altered regulatory or binding interactions in the alternatively spliced isoform. We found that 6-51% of PTMs are excluded from at least one isoform, depending on the modification type. Further, approximately 2% of prospective PTM sites exhibited altered regulatory sequences surrounding the modification site, suggesting that regulatory or binding interactions might be diversified in these proteoforms. Lastly, we applied this PTM-to-isoform mapping approach to explore the impacts of disease-related splicing in prostate cancer, identifying possible new hypotheses explaining the variable consequences of ESRP1 expression in different cancers. As a part of this work, we have provided an easily implementable tool for annotating splice events identified from RNA-sequencing with PTMs and their functional consequences, called PTM-POSE.

2.
Nat Commun ; 13(1): 4283, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879309

RESUMO

Kinase inhibitors as targeted therapies have played an important role in improving cancer outcomes. However, there are still considerable challenges, such as resistance, non-response, patient stratification, polypharmacology, and identifying combination therapy where understanding a tumor kinase activity profile could be transformative. Here, we develop a graph- and statistics-based algorithm, called KSTAR, to convert phosphoproteomic measurements of cells and tissues into a kinase activity score that is generalizable and useful for clinical pipelines, requiring no quantification of the phosphorylation sites. In this work, we demonstrate that KSTAR reliably captures expected kinase activity differences across different tissues and stimulation contexts, allows for the direct comparison of samples from independent experiments, and is robust across a wide range of dataset sizes. Finally, we apply KSTAR to clinical breast cancer phosphoproteomic data and find that there is potential for kinase activity inference from KSTAR to complement the current clinical diagnosis of HER2 status in breast cancer patients.


Assuntos
Neoplasias da Mama , Proteômica , Algoritmos , Neoplasias da Mama/patologia , Feminino , Humanos , Fosfoproteínas/metabolismo , Fosforilação , Fosfotransferases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...