Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 11(20): 4021-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21898824

RESUMO

We have recently demonstrated that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post-translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N-linked glycoproteins from cell lysates using multi-lectin chromatography and label-free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC- and GSI-treated groups, respectively, filtered by a combination of decoy database searching and Trans-Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi-lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Glioblastoma , Glicoproteínas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Western Blotting , Humanos , Lectinas/química , Células-Tronco Neoplásicas/citologia , Análise Serial de Proteínas
2.
Cancer Res ; 71(18): 6061-72, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21788346

RESUMO

One important function of endothelial cells in glioblastoma multiforme (GBM) is to create a niche that helps promote self-renewal of cancer stem-like cells (CSLC). However, the underlying molecular mechanism for this endothelial function is not known. Since activation of NOTCH signaling has been found to be required for propagation of GBM CSLCs, we hypothesized that the GBM endothelium may provide the source of NOTCH ligands. Here, we report a corroboration of this concept with a demonstration that NOTCH ligands are expressed in endothelial cells adjacent to NESTIN and NOTCH receptor-positive cancer cells in primary GBMs. Coculturing human brain microvascular endothelial cells (hBMEC) or NOTCH ligand with GBM neurospheres promoted GBM cell growth and increased CSLC self-renewal. Notably, RNAi-mediated knockdown of NOTCH ligands in hBMECs abrogated their ability to induce CSLC self-renewal and GBM tumor growth, both in vitro and in vivo. Thus, our findings establish that NOTCH activation in GBM CSLCs is driven by juxtacrine signaling between tumor cells and their surrounding endothelial cells in the tumor microenvironment, suggesting that targeting both CSLCs and their niche may provide a novel strategy to deplete CSLCs and improve GBM treatment.


Assuntos
Neoplasias Encefálicas/patologia , Células Endoteliais/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Receptores Notch/metabolismo , Nicho de Células-Tronco , Antígeno AC133 , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Processos de Crescimento Celular/fisiologia , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Peptídeos/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptores Notch/biossíntese , Receptores Notch/deficiência , Receptores Notch/genética , Proteínas Serrate-Jagged , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Neurooncol ; 103(2): 247-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20853134

RESUMO

The stem cell factor/kit tyrosine kinase receptor pathway is related to tumor growth and progression in several cancers including Ewing sarcoma, a peripheral PNET (pPNET). Identifying additional groups of tumors that may use the pathway is important as they might be responsive to imatinib mesylate treatment. MB and central PNET (cPNET) are embryonal tumors of the CNS that share similar undifferentiated morphology with Ewing sarcomas and display aggressive clinical behavior. cPNET outcome is significantly lower than MB outcome, even for localized tumors treated with high-risk MB therapy. The elucidation of signaling pathways involved in MB and cPNET pathogenesis, and the discovery of new therapeutic targets is necessary to improve the treatment of these neoplasms. We analyzed KIT expression in 2 MB, one pPNET, one cPNET and 2 rhabdomyosarcoma (RMS) cell lines. Also, in 13 tumor samples (12 MB and one cPNET), we found KIT overexpression in the most aggressive cell lines (metastatic MB and pPNET). Hypermethylation of KIT was clear in the RMS non-expressing cell lines. Among MB tumors, we could see variable levels of KIT expression; a subset of them (25%) might be related in its growth pattern to KIT up-regulation. No methylated KIT was detected in the tumors expressing the lowest levels of KIT. Our results point to methylation as an epigenetic regulatory mechanism for KIT inhibition only in the KIT non-expressing RMS cell lines, and neither in the rest of the cell lines nor in the tumor samples.


Assuntos
Neoplasias Cerebelares/genética , Metilação de DNA/genética , Meduloblastoma/genética , Neoplasias de Bainha Neural/genética , Proteínas Proto-Oncogênicas c-kit/genética , Western Blotting , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Meduloblastoma/metabolismo , Neoplasias de Bainha Neural/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
4.
J Proteome Res ; 10(1): 330-8, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21110520

RESUMO

Cancer stem cells are responsible for tumor formation through self-renewal and differentiation into multiple cell types and thus represent a new therapeutic target for tumors. Glycoproteins play a critical role in determining the fates of stem cells such as self-renewal, proliferation, and differentiation. Here we applied a multilectin affinity chromatography and quantitative glycoproteomics approach to analyze alterations of glycoproteins relevant to the differentiation of a glioblastoma-derived stem cell line HSR-GBM1. Three lectins including concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin (PNA) were used to capture glycoproteins, followed by LC-MS/MS analysis. A total of 73 and 79 high-confidence (FDR < 0.01) glycoproteins were identified from the undifferentiated and differentiated cells, respectively. Label-free quantitation resulted in the discovery of 18 differentially expressed glycoproteins, wherein 9 proteins are localized in the lysosome. All of these lysosomal glycoproteins were up-regulated after differentiation, where their principal function was hydrolysis of glycosyl residues. Protein-protein interaction and functional analyses revealed the active involvement of lysosomes during the process of glioblastoma stem cell differentiation. This work provides glycoprotein markers to characterize differentiation status of glioblastoma stem cells that may be useful in stem-cell therapy of glioblastoma.


Assuntos
Diferenciação Celular , Glioblastoma/química , Glicoproteínas/química , Proteômica/métodos , Western Blotting , Linhagem Celular Tumoral , Forma Celular , Cromatografia de Afinidade , Cromatografia Líquida , Análise por Conglomerados , Bases de Dados de Proteínas , Glioblastoma/metabolismo , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Humanos , Lisossomos/metabolismo , Microscopia de Contraste de Fase , Células-Tronco Neoplásicas , Lectinas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Espectrometria de Massas em Tandem
5.
Mol Biol Cell ; 20(3): 948-62, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19109420

RESUMO

Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Animais , Biomarcadores/metabolismo , Células COS , Bovinos , Linhagem Celular Tumoral , Chlorocebus aethiops , Cortactina/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Quinases da Família src/metabolismo
6.
Mutat Res ; 616(1-2): 103-18, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17174355

RESUMO

Chromosome aberrations (Cabs) can be induced in vitro by non-DNA damaging compounds, often associated with cytotoxicity and DNA synthesis inhibition, and under conditions that would not be relevant in vivo. Such misleading positive results are reported both in Chinese hamster cell lines and in human peripheral blood lymphocytes (HL). We assessed the response of HL to compounds with varied genetic toxicity profiles, all of which induced Cabs in CHO cells Seven of 10 compounds were negative or equivocal in HL. Results in purified lymphocytes for four verified that the difference was not due to the presence of blood in cultures. Two compounds that were weakly positive in the Ames test and one that induced DNA adducts were negative or equivocal in the HL assay; their overall mutagenic potential in vivo is not clear. Of four Ames-negative compounds, three of which inhibited DNA synthesis in CHO cells, three were negative and one was equivocal in the HL assay. A potent Cab inducer, which also induced micronuclei in vivo (but was negative in the Ames test) was clearly positive in the HL assay. Two compounds were clearly positive in HL only when the mitotic indices (MI) were below 50% of control. These are genotoxic in other assays but our evidence suggests that Cab induction is related more to toxicity than to primary DNA damage. For this limited set of 10 compounds, HL were more likely than CHO cells to give negative or equivocal results. It is likely that more stringent checkpoint controls in human cells prevent damaged cells reaching mitosis, and may also influence the reported greater sensitivity to induction of aneuploidy and polyploidy of normal rodent compared with human cells. In the studies reported here, two strong inducers of polyploidy in CHO cells gave weaker increases in HL. Human lymphocytes have disadvantages as a routine screening assay (finding donors, known individual variability, increased time required and the inadequacy of the MI as a toxicity measure), but may be useful in follow-up testing to assess weight of evidence about genotoxic risk to humans, for compounds that are positive in the Chinese hamster cell Cabs assays.


Assuntos
Aberrações Cromossômicas , Replicação do DNA , Linfócitos/efeitos dos fármacos , Mutagênicos/farmacologia , Adulto , Animais , Afidicolina/farmacologia , Células CHO , Células Cultivadas , Células Clonais , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Testes de Mutagenicidade , Poliploidia
7.
J Cell Biol ; 174(3): 447-58, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16880273

RESUMO

Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV-TRIP6 interaction may regulate FA maturation and/or disassembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Regulação para Baixo/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas com Domínio LIM , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Ratos , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/química , Região do Complexo-t do Genoma
8.
Cancer Genet Cytogenet ; 157(1): 78-81, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15676153

RESUMO

Deletions in the long arm of chromosome 6 are one of the most commonly observed chromosome aberrations in lymphoid malignancies and have been identified as an adverse prognostic factor in subsets of leukemia and lymphoma. Although large deletions can readily be detected with conventional banding methods, subtle rearrangements represent a major diagnostic challenge. To identify and follow up 6q abnormalities that are difficult to detect with conventional banding analysis, we have developed a dual-color fluorescence in situ hybridization probe set on 6q21 and 6q27. We have also demonstrated its potential for clinical applications. While applying this new probe set to clinical cytogenetic studies, we identified a unique t(6;14) translocation in a patient with acute lymphoid leukemia. Because the translocation breakpoint on chromosome 6 is located within a common deletion region in patients with lymphoid malignancies, the determination of this translocation breakpoint will facilitate the identification of a candidate tumor suppressor gene in 6q.


Assuntos
Cromossomos Humanos Par 14 , Hibridização in Situ Fluorescente/métodos , Leucemia-Linfoma de Células T do Adulto/genética , Translocação Genética , Cromossomos Artificiais Bacterianos , Cromossomos Humanos Par 6 , Humanos
9.
J Biol Chem ; 278(46): 46094-106, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12917436

RESUMO

Detergent-resistant membranes contain signaling and integral membrane proteins that organize cholesterol-rich domains called lipid rafts. A subset of these detergent-resistant membranes (DRM-H) exhibits a higher buoyant density ( approximately 1.16 g/ml) because of association with membrane skeleton proteins, including actin, myosin II, myosin 1G, fodrin, and an actin- and membrane-binding protein called supervillin (Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., and Luna, E. J. (2002) J. Biol. Chem. 277, 43399-43409). To characterize interactions among DRM-H cytoskeletal proteins, we investigated the binding partners of the novel supervillin N terminus, specifically amino acids 1-830. We find that the supervillin N terminus binds directly to myosin II, as well as to F-actin. Three F-actin-binding sites were mapped to sequences within amino acids approximately 280-342, approximately 344-422, and approximately 700-830. Sequences with combinations of these sites promote F-actin cross-linking and/or bundling. Supervillin amino acids 1-174 specifically interact with the S2 domain in chicken gizzard myosin and nonmuscle myosin IIA (MYH-9) but exhibit little binding to skeletal muscle myosin II. Direct or indirect binding to filamin also was observed. Overexpression of supervillin amino acids 1-174 in COS7 cells disrupted the localization of myosin IIB without obviously affecting actin filaments. Taken together, these results suggest that supervillin may mediate actin and myosin II filament organization at cholesterol-rich membrane domains.


Assuntos
Actinas/química , Proteínas de Membrana/química , Proteínas dos Microfilamentos/química , Miosina Tipo II/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Bovinos , Galinhas , Colesterol/metabolismo , Citoesqueleto/metabolismo , DNA/metabolismo , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde , Bicamadas Lipídicas/metabolismo , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculos/metabolismo , Miosinas/química , Miosina não Muscular Tipo IIB/química , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
10.
J Cell Sci ; 116(Pt 11): 2261-75, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12711699

RESUMO

The membrane skeleton protein supervillin binds tightly to both F-actin and membranes and can potentiate androgen receptor activity in non-muscle cells. We report that muscle, which constitutes the principal tissue source for supervillin sequences, contains a approximately 250 kDa isoform of supervillin that localizes within nuclei and with dystrophin at costameres, regions of F-actin membrane attachment in skeletal muscle. The gene encoding this protein, 'archvillin' (Latin, archi; Greek, árchos; 'principal' or 'chief'), contains an evolutionarily conserved, muscle-specific 5' leader sequence. Archvillin cDNAs also contain four exons that encode approximately 47 kDa of additional muscle-specific protein sequence in the form of two inserts within the function-rich N-terminus of supervillin. The first of these muscle-specific inserts contains two conserved nuclear targeting signals in addition to those found in sequences shared with supervillin. Archvillin, like supervillin, binds directly to radiolabeled F-actin and co-fractionates with plasma membranes. Colocalization of archvillin with membrane-associated actin filaments, non-muscle myosin II, and--to a lesser extent--vinculin was observed in myoblasts. Striking localizations of archvillin protein and mRNA were observed at the tips of differentiating myotubes. Transfected protein chimeras containing archvillin insert sequences inhibited myotube formation, consistent with a dominant-negative effect during early myogenesis. These data suggest that archvillin is among the first costameric proteins to assemble during myogenesis and that it contributes to myogenic membrane structure and differentiation.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Clonagem Molecular , Expressão Gênica/fisiologia , Humanos , Isomerismo , Proteínas de Membrana/química , Camundongos , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Músculo Esquelético/citologia , Coelhos , Sarcolema/metabolismo
11.
J Biol Chem ; 277(45): 43399-409, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12202484

RESUMO

Plasma membranes are organized into functional domains both by liquid-ordered packing into "lipid rafts," structures that resist Triton extraction, and by attachments to underlying cytoskeletal proteins in assemblies called "membrane skeletons." Although the actin cytoskeleton is implicated in many lipid raft-mediated signaling processes, little is known about the biochemical basis for actin involvement. We show here that a subset of plasma membrane skeleton proteins from bovine neutrophils co-isolates with cholesterol-rich, detergent-resistant membrane fragments (DRMs) that exhibit a relatively high buoyant density in sucrose (DRM-H; d approximately 1.16 g/ml). By using matrix-assisted laser desorption/ionization time of flight and tandem mass spectrometry, we identified 19 major DRM-H proteins. Membrane skeleton proteins include fodrin (nonerythroid spectrin), myosin-IIA, myosin-IG, alpha-actinin 1, alpha-actinin 4, vimentin, and the F-actin-binding protein, supervillin. Other DRM-H components include lipid raft-associated integral membrane proteins (stomatin, flotillin 1, and flotillin 2), extracellular surface-bound and glycophosphatidylinositol-anchored proteins (IgM, membrane-type 6 matrix metalloproteinase), and intracellular dually acylated signaling proteins (Lyn kinase, Galpha(i-2)). Consistent with cytoskeletal association, most DRM-H-associated flotillin 2, Lyn, and Galpha(i-2) also resist extraction with 0.1 m octyl glucoside. Supervillin, myosin-IG, and myosin-IIA resist extraction with 0.1 m sodium carbonate, a treatment that removes all detectable actin, suggesting that these cytoskeletal proteins are proximal to the DRM-H bilayer. Binding of supervillin to the DRM-H fragments is confirmed by co-immunoaffinity purification. In spreading neutrophils, supervillin localizes with F-actin in cell extensions and in discrete basal puncta that partially overlap with Galpha(i) staining. We suggest that the DRM-H fraction represents a membrane skeleton-associated subset of leukocyte signaling domains.


Assuntos
Actinas/sangue , Membrana Celular/química , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Neutrófilos/química , Animais , Bovinos , Detergentes , Imunoglobulina G , Proteínas de Membrana/imunologia , Proteínas dos Microfilamentos/sangue , Proteínas dos Microfilamentos/imunologia , Microscopia Eletrônica , Proteômica/métodos , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...