Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36602867

RESUMO

Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.


Assuntos
Hipogonadismo , Adulto , Animais , Feminino , Humanos , Camundongos , Heterozigoto , Hipogonadismo/genética , Mutação , Fenótipo , Fatores de Transcrição SOXB1/genética
3.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178483

RESUMO

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Assuntos
Hipogonadismo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Hipogonadismo/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas Repressoras , Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de GTPase/genética
4.
J Clin Endocrinol Metab ; 107(8): 2228-2242, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35574646

RESUMO

CONTEXT: The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE: To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS: Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION: CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Variações do Número de Cópias de DNA , Humanos , Hipogonadismo/epidemiologia , Hipogonadismo/genética , Síndrome de Kallmann/genética , Mutação , Fenótipo , Prevalência
5.
Genet Med ; 23(4): 629-636, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442024

RESUMO

PURPOSE: SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders. METHODS: Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population. RESULTS: Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD. CONCLUSION: SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Fatores de Transcrição SOXE/genética , Síndrome de Waardenburg , Genótipo , Humanos , Hipogonadismo/genética , Mutação , Síndrome de Waardenburg/genética
6.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620954

RESUMO

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hormônio Liberador de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Genes Dominantes/genética , Hormônio Liberador de Gonadotropina/deficiência , Haploinsuficiência/genética , Humanos , Síndrome de Kallmann/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Peixe-Zebra/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32376645

RESUMO

Biallelic pathogenic variants in RAB3GAP2 cause Warburg Micro syndrome (WARBM) and Martsolf syndrome (MS), two rare, phenotypically overlapping disorders characterized by congenital cataracts, intellectual disability, and hypogonadism. Although the initial report documented hypergonadotropic hypogonadism (implying a gonadal defect), an adolescent girl with WARBM/MS was subsequently reported to have hypogonadotropic hypogonadism (implying a central defect in either the hypothalamus or anterior pituitary). However, in adult MS, hypogonadotropism has not been convincingly demonstrated. Additionally, the correlation between the pathogenic severity of variants in RAB3GAP2 and the phenotypic severity also remains unclear. Here we present a clinical report of a woman with congenital cataracts, apparent intellectual disability, and pubertal failure who underwent exome sequencing (ES) to determine a precise molecular diagnosis. Reproductive phenotypes reported previously in individuals with MS and the genotypic spectrum of previous RAB3GAP2 variants were also reviewed. The ES identified pathogenic compound heterozygous RAB3GAP2 variants (c.387-2A > G; p.(Arg428Glu)) combined with her phenotypic features, which enabled a unifying molecular diagnosis of MS. Reproductive evaluation confirmed a normosmic idiopathic hypogonadotropic hypogonadism. Review of the RAB3GAP2 allelic spectrum in WARBM/MS suggests that although variants resulting in complete abrogation of RAB3GAP2 protein function cause severe WARBM, variants associated with partially preserved RAB3GAP2 function cause milder MS. This report expands the genotypic and phenotypic spectrum of MS and demonstrates hypogonadotropic hypogonadism as a key pathophysiologic abnormality in MS. Genotype-phenotype associations of previously reported RAB3GAP2 variants indicate that variants that fully abolish RAB3GAP2 function result in WARBM, whereas MS is associated with variants of lesser severity with residual RAB3GAP2 function.


Assuntos
Catarata/diagnóstico , Catarata/genética , Estudos de Associação Genética , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Proteínas rab3 de Ligação ao GTP/genética , Alelos , Substituição de Aminoácidos , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Linhagem , Fenótipo , Sequenciamento do Exoma
8.
Genet Med ; 22(8): 1329-1337, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341572

RESUMO

PURPOSE: Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions. METHODS: Exome sequencing was performed in an extended family with autosomal dominant, markedly delayed puberty. The effects of the variant were studied in a GnRH neuronal cell line. Variants in the same gene were sought in a large cohort of individuals with IHH. RESULTS: We identified a rare missense variant (F900V) in DLG2 (which encodes PSD-93) that cosegregated with the delayed puberty. The variant decreased GnRH expression in vitro. PSD-93 is an anchoring protein of NMDA receptors, a type of glutamate receptor that has been implicated in the control of puberty in laboratory animals. The F900V variant impaired the interaction between PSD-93 and a known binding partner, Fyn, which phosphorylates NMDA receptors. Variants in DLG2 that also decreased GnRH expression were identified in three unrelated families with IHH. CONCLUSION: The findings indicate that variants in DLG2/PSD-93 cause autosomal dominant delayed puberty and may also contribute to IHH. The findings also suggest that the pathogenesis involves impaired NMDA receptor signaling and consequently decreased GnRH secretion.


Assuntos
Hormônio Liberador de Gonadotropina , Hipogonadismo , Hormônio Liberador de Gonadotropina/genética , Guanilato Quinases , Humanos , Hipogonadismo/genética , Proteínas , Transdução de Sinais , Proteínas Supressoras de Tumor , Sequenciamento do Exoma
9.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034419

RESUMO

CONTEXT: The reproductive axis is controlled by a network of gonadotropin-releasing hormone (GnRH) neurons born in the primitive nose that migrate to the hypothalamus alongside axons of the olfactory system. The observation that congenital anosmia (inability to smell) is often associated with GnRH deficiency in humans led to the prevailing view that GnRH neurons depend on olfactory structures to reach the brain, but this hypothesis has not been confirmed. OBJECTIVE: The objective of this work is to determine the potential for normal reproductive function in the setting of completely absent internal and external olfactory structures. METHODS: We conducted comprehensive phenotyping studies in 11 patients with congenital arhinia. These studies were augmented by review of medical records and study questionnaires in another 40 international patients. RESULTS: All male patients demonstrated clinical and/or biochemical signs of GnRH deficiency, and the 5 men studied in person had no luteinizing hormone (LH) pulses, suggesting absent GnRH activity. The 6 women studied in person also had apulsatile LH profiles, yet 3 had spontaneous breast development and 2 women (studied from afar) had normal breast development and menstrual cycles, suggesting a fully intact reproductive axis. Administration of pulsatile GnRH to 2 GnRH-deficient patients revealed normal pituitary responsiveness but gonadal failure in the male patient. CONCLUSIONS: Patients with arhinia teach us that the GnRH neuron, a key gatekeeper of the reproductive axis, is associated with but may not depend on olfactory structures for normal migration and function, and more broadly, illustrate the power of extreme human phenotypes in answering fundamental questions about human embryology.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/fisiologia , Nariz/anormalidades , Transtornos do Olfato/congênito , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/deficiência , Gônadas/anormalidades , Gônadas/patologia , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Hipogonadismo/fisiopatologia , Lactente , Hormônio Luteinizante/sangue , Masculino , Pessoa de Meia-Idade , Neurogênese/fisiologia , Neurônios/metabolismo , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo , Transtornos do Olfato/fisiopatologia , Condutos Olfatórios/metabolismo , Condutos Olfatórios/patologia , Tamanho do Órgão , Adulto Jovem
10.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628846

RESUMO

CONTEXT: Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. OBJECTIVE: Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. DESIGN: Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. SETTING: The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. PATIENT: A KS patient with a unique translocation, t(7;12)(q22;q24). INTERVENTIONS/MAIN OUTCOME MEASURE/RESULTS: A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. CONCLUSIONS: A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Síndrome de Kallmann/patologia , RNA Longo não Codificante/genética , Translocação Genética , Adulto , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 7/genética , Estudo de Associação Genômica Ampla , Hormônio Liberador de Gonadotropina/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Crista Neural/metabolismo , Crista Neural/patologia , Prognóstico
11.
J Clin Endocrinol Metab ; 104(8): 3403-3414, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220265

RESUMO

CONTEXT: After completion of puberty a subset of men experience functional hypogonadotropic hypogonadism (FHH) secondary to excessive exercise or weight loss. This phenomenon is akin to hypothalamic amenorrhea (HA) in women, yet little is known about FHH in men. OBJECTIVE: To investigate the neuroendocrine mechanisms, genetics, and natural history underlying FHH. DESIGN: Retrospective study in an academic medical center. PARTICIPANTS: Healthy postpubertal men presenting with symptoms of hypogonadism in the setting of excessive exercise (>10 hours/week) or weight loss (>10% of body weight). Healthy age-matched men served as controls. INTERVENTIONS: Clinical assessment, biochemical and neuroendocrine profiling, body composition, semen analysis, and genetic evaluation of genes known to cause isolated GnRH deficiency. MAIN OUTCOME MEASURES: Reproductive hormone levels, endogenous GnRH-induced LH pulse patterns, and rare genetic variants. RESULTS: Ten men with FHH were compared with 18 age-matched controls. Patients had significantly lower body mass index, testosterone, LH, and mean LH pulse amplitudes yet normal LH pulse frequency, serum FSH, and sperm counts. Some patients exhibited nocturnal, sleep-entrained LH pulses characteristic of early puberty, and one FHH subject showed a completely apulsatile LH secretion. After decreased exercise and weight gain, five men with men had normalized serum testosterone levels, and symptoms resolved. Rare missense variants in NSMF (n = 1) and CHD7 (n = 1) were identified in two men with FHH. CONCLUSIONS: FHH is a rare, reversible form of male GnRH deficiency. LH pulse patterns in male FHH are similar to those observed in women with HA. This study expands the spectrum of GnRH deficiency disorders in men.


Assuntos
Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/fisiopatologia , Sistemas Neurossecretores/fisiopatologia , Adolescente , Humanos , Hipogonadismo/genética , Hormônio Luteinizante/sangue , Masculino , Mutação de Sentido Incorreto , Estudos Retrospectivos , Fatores de Transcrição/genética , Adulto Jovem
12.
Hum Mol Genet ; 27(2): 338-350, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29161432

RESUMO

A major challenge in human genetics is the validation of pathogenicity of heterozygous missense variants. This problem is well-illustrated by PROKR2 variants associated with Isolated GnRH Deficiency (IGD). Homozygous, loss of function variants in PROKR2 was initially implicated in autosomal recessive IGD; however, most IGD-associated PROKR2 variants are heterozygous. Moreover, while IGD patient cohorts are enriched for PROKR2 missense variants similar rare variants are also found in normal individuals. To elucidate the pathogenic mechanisms distinguishing IGD-associated PROKR2 variants from rare variants in controls, we assessed 59 variants using three approaches: (i) in silico prediction, (ii) traditional in vitro functional assays across three signaling pathways with mutant-alone transfections, and (iii) modified in vitro assays with mutant and wild-type expression constructs co-transfected to model in vivo heterozygosity. We found that neither in silico analyses nor traditional in vitro assessments of mutants transfected alone could distinguish IGD variants from control variants. However, in vitro co-transfections revealed that 15/34 IGD variants caused loss-of-function (LoF), including 3 novel dominant-negatives, while only 4/25 control variants caused LoF. Surprisingly, 19 IGD-associated variants were benign or exhibited LoF that could be rescued by WT co-transfection. Overall, variants that were LoF in ≥ 2 signaling assays under co-transfection conditions were more likely to be disease-associated than benign or 'rescuable' variants. Our findings suggest that in vitro modeling of WT/Mutant interactions increases the resolution for identifying causal variants, uncovers novel dominant negative mutations, and provides new insights into the pathogenic mechanisms underlying heterozygous PROKR2 variants.


Assuntos
Nanismo Hipofisário/genética , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Nanismo Hipofisário/metabolismo , Hormônio Liberador de Gonadotropina/deficiência , Células HEK293 , Humanos , Hipogonadismo/genética , Linhagem , Transdução de Sinais
13.
Am J Med Genet C Semin Med Genet ; 175(4): 507-515, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29152903

RESUMO

Mutations in the gene CHD7 cause CHARGE syndrome, a rare multi-organ syndromic disorder. Gonadal defects are common in individuals with CHARGE syndrome (seen in ∼60-80% of cases) and represent the letter "G" in the CHARGE syndrome acronym. The gonadal defect in CHARGE syndrome results from congenital deficiency of the hypothalamic hormone Gonadotropin-releasing hormone (GnRH), which manifests clinically as pubertal failure and infertility, and biochemically as hypogonadotropic hypogonadism (low sex steroid hormone levels with inappropriately normal or low gonadotropin levels). In addition to the gonadal endocrine abnormalities, in a small minority of individuals with CHARGE, additional endocrine defects including growth hormone deficiency, multiple pituitary hormone deficits and primary hypothyroidism may also be seen. CHD7 mutations disrupt the targeting of olfactory axons and the migration of GnRH-synthesizing neurons during embryonic development, resulting in congenital idiopathic hypogonadotropic hypogonadism (IHH) and anosmia (or hyposmia), two features that define human Kallmann syndrome. Since Kallmann syndrome is one of the constituent phenotypes within CHARGE, recent studies have investigated the role of CHD7 mutations in individuals with IHH and established that deleterious missense mutations in CHD7 are associated with Kallmann syndrome as well as normosmic form of IHH. These missense mutations affect the ATPase and nucleosome remodeling activities of the CHD7 protein. These observations suggest that CHD7 protein function is critical for the ontogeny of GnRH neurons and neuroendocrine regulation of GnRH secretion.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Doenças do Sistema Endócrino/diagnóstico , Doenças do Sistema Endócrino/genética , Genitália/anormalidades , Genitália/fisiopatologia , Mutação , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Animais , Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Modelos Animais de Doenças , Estudos de Associação Genética , Humanos , Camundongos
14.
EMBO Mol Med ; 9(10): 1379-1397, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754744

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin-releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with ß-Klotho (KLB), the obligate co-receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH Genetic screening of 334 CHH patients identified seven heterozygous loss-of-function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Proteínas de Membrana/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Células COS , Caenorhabditis elegans/genética , Chlorocebus aethiops , Estudos de Coortes , Feminino , Fatores de Crescimento de Fibroblastos/genética , Hormônio Liberador de Gonadotropina/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
15.
J Clin Invest ; 127(3): 796-797, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28218621

RESUMO

MicroRNAs (miRNAs) have emerged as important regulators of a variety of biological processes and pathways. In this issue of the JCI, Ahmed et al. reveal that miR-7a2 is a critical regulator of sexual maturation and reproductive function, as mice lacking miR-7a2 develop hypogonadotropic hypogonadism and infertility. Using a bioinformatics approach, the authors identified several miR-7a2 target genes and pathways that have not been previously associated with gonadotropin biosynthesis and/or secretion. Together, these results identify miR-7a2-regulated genes involved in reproductive hormone biosynthesis pathways and provide a framework for future studies aimed at understanding rare reproductive conditions.


Assuntos
Gonadotrofos/metabolismo , Hipogonadismo/metabolismo , MicroRNAs/metabolismo , Maturidade Sexual , Transdução de Sinais , Animais , Feminino , Gonadotrofos/patologia , Hipogonadismo/genética , Hipogonadismo/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética
16.
Endocr Rev ; 2016(1): 4-22, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-27454361

RESUMO

The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).


Assuntos
Variação Genética , Genômica/métodos , Hipotálamo/fisiopatologia , Reprodução , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipogonadismo/fisiopatologia , Hipotálamo/metabolismo , Masculino
17.
Endocr Rev ; 36(6): 603-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26394276

RESUMO

The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery.


Assuntos
Hormônio Liberador de Gonadotropina/deficiência , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/fisiologia , Reprodução/genética , Cariótipo Anormal , Deleção de Genes , Hormônio Liberador de Gonadotropina/fisiologia , Humanos , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/fisiologia , Sistemas Neurossecretores/fisiologia , Linhagem , Fenótipo , Síndrome
18.
J Clin Endocrinol Metab ; 100(10): E1378-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26207952

RESUMO

CONTEXT: Loss of function (LoF) mutations in more than 20 genes are now known to cause isolated GnRH deficiency (IGD) in humans. Most causal IGD mutations are typically private, ie, limited to a single individual/pedigree. However, somewhat paradoxically, four IGD genes (GNRH1, TAC3, PROKR2, and GNRHR) have been shown to harbor LoF founder mutations that are shared by multiple unrelated individuals. It is not known whether similar founder mutations occur in other IGD genes. OBJECTIVE: The objective of the study was to determine whether shared deleterious mutations in IGD-associated genes represent founder alleles. SETTING: This study was an international collaboration among academic medical centers. METHODS: IGD patients with shared mutations, defined as those documented in three or more unrelated probands in 14 IGD-associated genes, were identified from various academic institutions, the Human Gene Mutation Database, and literature reports by other international investigators. Haplotypes of single-nucleotide polymorphisms and short tandem repeats surrounding the mutations were constructed to assess genetic ancestry. RESULTS: A total of eight founder mutations in five genes, GNRHR (Q106R, R262Q, R139H), TACR3 (W275X), PROKR2 (R85H), FGFR1 (R250Q, G687R), and HS6ST1 (R382W) were identified. Most founder alleles were present at low frequency in the general population. The estimated age of these mutant alleles ranged from 1925 to 5600 years and corresponded to the time of rapid human population expansion. CONCLUSIONS: We have expanded the spectrum of founder alleles associated with IGD to a total of eight founder mutations. In contrast to the approximately 9000-year-old PROKR2 founder allele that may confer a heterozygote advantage, the rest of the founder alleles are relatively more recent in origin, in keeping with the timing of recent human population expansion and any selective heterozygote advantage of these alleles requires further evaluation.


Assuntos
Hormônio Liberador de Gonadotropina/deficiência , Hormônio Liberador de Gonadotropina/genética , Doenças Hipotalâmicas/genética , Mutação , Neurocinina B/genética , Receptores Acoplados a Proteínas G/genética , Receptores LHRH/genética , Receptores de Peptídeos/genética , Alelos , Haplótipos , Humanos , Linhagem
19.
Proc Natl Acad Sci U S A ; 111(50): 17953-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25472840

RESUMO

Inactivating mutations in chromodomain helicase DNA binding protein 7 (CHD7) cause CHARGE syndrome, a severe multiorgan system disorder of which Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a minor feature. Recent reports have described predominantly missense CHD7 alleles in IGD patients, but it is unclear if these alleles are relevant to causality or overall genetic burden of Kallmann syndrome (KS) and normosmic form of IGD. To address this question, we sequenced CHD7 in 783 well-phenotyped IGD patients lacking full CHARGE features; we identified nonsynonymous rare sequence variants in 5.2% of the IGD cohort (73% missense and 27% splice variants). Functional analyses in zebrafish using a surrogate otolith assay of a representative set of these CHD7 alleles showed that rare sequence variants observed in controls showed no altered function. In contrast, 75% of the IGD-associated alleles were deleterious and resulted in both KS and normosmic IGD. In two families, pathogenic mutations in CHD7 coexisted with mutations in other known IGD genes. Taken together, our data suggest that rare deleterious CHD7 alleles contribute to the mutational burden of patients with both KS and normosmic forms of IGD in the absence of full CHARGE syndrome. These findings (i) implicate a unique role or preferential sensitivity for CHD7 in the ontogeny of GnRH neurons, (ii) reiterate the emerging genetic complexity of this family of IGD disorders, and (iii) demonstrate how the coordinated use of well-phenotyped cohorts, families, and functional studies can inform genetic architecture and provide insights into the developmental biology of cellular systems.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Deficiências Nutricionais/genética , Hormônio Liberador de Gonadotropina/deficiência , Síndrome de Kallmann/genética , Fenótipo , Peixe-Zebra/genética , Animais , Sequência de Bases , Síndrome CHARGE/genética , Síndrome CHARGE/patologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/genética , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Membrana dos Otólitos/patologia , Estrutura Terciária de Proteína , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...