Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 825: 153961, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189206

RESUMO

TOXSWA is a numerical model describing pesticide behavior in an edge-of-field waterbody. It is widely used to predict exposure in regulatory risk assessment for aquatic ecosystems. Exposure concentrations are predicted based upon pesticide process parameters obtained in standardized laboratory experiments. However, few tests of the model performance based on field data have been carried out. We compare simulated concentrations to observations from a field experiment with four shallow stagnant ditches over sprayed with chlorpyrifos, a moderately volatile pesticide with a significant sorption capacity. Input parameters describing the four ditches, such as dimensions, water depth, sediment and macrophyte characteristics were measured in detail. Additionally, laboratory experiments were carried out to determine site-specific values for parameters describing chlorpyrifos degradation in water and sediment, as well as sorption to the two dominant macrophyte species. Based upon these estimated parameters, the correspondence between simulated and measured concentrations in water, sediment and macrophytes is poor. We attribute this discrepancy to a lack of site-specific input for the processes of volatilization and sorption to sediment, which both are important processes for chlorpyrifos. Therefore, we calibrated TOXSWA using the optimization tool PEST. The transfer coefficient for volatilization and the coefficient for sorption to sediment were optimized based on the observed concentrations in water and sediment. This resulted in a substantial improvement of correspondence. Optimized values of the transfer coefficient for volatilization and the coefficient for sorption to sediment are substantially higher than their initial estimates (4-8-fold and 2-4-fold increase, respectively), but can be well explained. The optimized coefficients vary less than a factor 2 between the four ditches. We conclude that TOXSWA can adequately predict chlorpyrifos behavior in the four ditches, provided that reliable site-specific parameter estimates are available. Field tests for other pesticides, waterbodies and agro-environmental conditions are warranted.


Assuntos
Clorpirifos , Praguicidas , Poluentes Químicos da Água , Ecossistema , Praguicidas/metabolismo , Água , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 175: 117-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376542

RESUMO

Effects of linuron on the sediment-rooted aquatic macrophyte Myriophyllum spicatum L. were studied in sediment-dosed test systems following a proposed guideline with extended test duration. Sediment, pore water, overlying water and macrophyte shoots were sampled weekly for chemical analyses. Linuron was stable in the sediments. Sediment and pore water concentrations were in equilibrium after 48 h. Overlying water concentrations increased over time, but did not reach equilibrium with pore water concentrations and were 100 times lower. Mass balances showed a rapid uptake of linuron by macrophyte roots. Known pathways and the compound's properties support the conclusion that Myriophyllum takes up linuron from pore water directly through the roots. Hence, effects on macrophytes in this type of sediment toxicity test should be expressed in terms of pore water concentrations. Pore water concentration is the most relevant parameter for describing effects on macrophytes.


Assuntos
Gleiquênias/efeitos dos fármacos , Herbicidas/toxicidade , Linurona/toxicidade , Poluentes Químicos da Água/toxicidade , Gleiquênias/crescimento & desenvolvimento , Sedimentos Geológicos/química , Raízes de Plantas
3.
Pest Manag Sci ; 69(6): 755-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23180504

RESUMO

BACKGROUND: The regulatory risk assessment of pesticides requires the assessment of exposure of aquatic ecosystems in small surface waters adjacent to agricultural fields. This exposure is predicted using simulation models, for which an important input parameter is the degradation rate in water. In regulatory dossiers, the decline rate in water from outdoor mesocosms is often available, but this rate encompasses more processes than degradation. Therefore, a procedure was designed for estimating the degradation rate in water that was suitable for mesocosm studies with limited datasets, e.g. datasets lacking site-specific sorption coefficients and relevant sediment properties. The procedure, based upon inverse modelling with TOXSWA, has been tested on a dataset for prosulfocarb in stagnant ditches. RESULTS: A degradation half-life in the ditch water of 2.9 days (20 °C) was found. This short half-life was to a significant extent accounted for by biodegradation rather than hydrolysis or photolysis. This half-life was considerably shorter than the half-life in the water layer of two laboratory water-sediment system experiments. CONCLUSION: The estimation procedure resulted in a unique half-life for the degradation rate in water. Such outdoor mesocosm studies seem to be better suited to assessing the degradation rate in water in ditches than the conventional water-sediment studies.


Assuntos
Carbamatos/química , Praguicidas/química , Poluentes Químicos da Água/química , Meia-Vida , Hidrólise , Cinética , Modelos Teóricos , Fotólise
4.
Arch Environ Contam Toxicol ; 60(4): 708-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20711777

RESUMO

The species sensitivity distribution (SSD) concept is an important probabilistic tool for environmental risk assessment (ERA) and accounts for differences in species sensitivity to different chemicals. The SSD model assumes that the sensitivity of the species included is randomly distributed. If this assumption is violated, indicator values, such as the 50% hazardous concentration, can potentially change dramatically. Fundamental research, however, has discovered and described specific mechanisms and factors influencing toxicity and sensitivity for several model species and chemical combinations. Further knowledge on how these mechanisms and factors relate to toxicologic standard end points would be beneficial for ERA. For instance, little is known about how the processes of toxicity relate to the dynamics of standard toxicity end points and how these may vary across species. In this article, we discuss the relevance of immobilization and mortality as end points for effects of the organophosphate insecticide chlorpyrifos on 14 freshwater arthropods in the context of ERA. For this, we compared the differences in response dynamics during 96 h of exposure with the two end points across species using dose response models and SSDs. The investigated freshwater arthropods vary less in their immobility than in their mortality response. However, differences in observed immobility and mortality were surprisingly large for some species even after 96 h of exposure. As expected immobility was consistently the more sensitive end point and less variable across the tested species and may therefore be considered as the relevant end point for population of SSDs and ERA, although an immobile animal may still potentially recover. This is even more relevant because an immobile animal is unlikely to survive for long periods under field conditions. This and other such considerations relevant to the decision-making process for a particular end point are discussed.


Assuntos
Artrópodes/efeitos dos fármacos , Clorpirifos/toxicidade , Água Doce/química , Atividade Motora/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Artrópodes/crescimento & desenvolvimento , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Dose Letal Mediana , Especificidade da Espécie , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
5.
Environ Pollut ; 157(1): 237-49, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18757125

RESUMO

Effects of chronic application of a mixture of the herbicide atrazine and the insecticide lindane were studied in indoor freshwater plankton-dominated microcosms. The macroinvertebrate community was seriously affected at all but the lowest treatment levels, the zooplankton community at the three highest treatment levels, with crustaceans, caddisflies and dipterans being the most sensitive groups. Increased abundance of the phytoplankton taxa Cyclotella sp. was found at the highest treatment level. Threshold levels for lindane, both at population and community level, corresponded well with those reported in the literature. Atrazine produced fewer effects than expected, probably due to decreased grazer stress on the algae as a result of the lindane application. The safety factors set by the Uniform Principles for individual compounds were also found to ensure protection against chronic exposure to a mixture of a herbicide and insecticide at community level, though not always at the population level.


Assuntos
Atrazina/farmacologia , Herbicidas/farmacologia , Hexaclorocicloexano/farmacologia , Inseticidas/farmacologia , Invertebrados/efeitos dos fármacos , Animais , Biodiversidade , Ecologia/métodos , Água Doce , Plâncton/efeitos dos fármacos , Medição de Risco/métodos
6.
Environ Toxicol Chem ; 27(12): 2530-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18699699

RESUMO

The fate and effects of the insecticide chlorpyrifos were studied in plankton-dominated, freshwater microcosms in Thailand. Disappearance rates of chlorpyrifos from the water column in the present study were similar to those in temperate regions. Insecticide accumulation in the sediment was relatively small, with the major part in the top layer (depth, 1.5 cm). Application of chlorpyrifos led to significant changes in freshwater biological communities. Clam shrimps (Conchostraca) and the cladoceran Moina micrura were the most susceptible species (no-observed-effect concentration [NOEC], 0.1 microg/L) and macroinvertebrates the most sensitive community (NOEC, 0.1 microg/L). These results are in agreement with those from semifield experiments with chlorpyrifos in temperate regions. The results of an in situ bioassay were used to calculate a NOEC of 0.1 microg/L and a 48-h median lethal concentration of 0.6 microg/L for M. micrura, which are similar to toxicity values reported for Daphnia magna in studies in temperate regions. Overall, these findings support the use of toxicity data from temperate regions for the risk assessment of low-persistent insecticides like chlorpyrifos for aquatic communities in tropical regions.


Assuntos
Clorpirifos/análise , Clorpirifos/toxicidade , Ecossistema , Inseticidas/análise , Inseticidas/toxicidade , Plâncton/química , Plâncton/efeitos dos fármacos , Animais , Clorofila/análise , Clorofila A , Nível de Efeito Adverso não Observado , Caramujos , Tailândia
7.
Environ Toxicol Chem ; 27(6): 1317-31, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18466038

RESUMO

Outdoor experimental ditches were used to evaluate the influence of untreated refuges on the recovery of zooplankton communities following treatment with the fast-dissipating insecticide lufenuron. Each experimental ditch was divided into three sections of the same surface area. The treatments differed in the proportion of ditch (0, 33, 67, and 100% of the surface area) to which the insecticide was applied at the same nominal treatment (3 mug/L). During the first week postapplication, a barrier was placed between treated and untreated ditch sections. The untreated sections were included to provide a source of organisms for recovery of affected zooplankton populations in the treated sections of the ditch after the removal of the barrier. Cyclopoida were the most affected by lufenuron treatment, followed by Daphnia gr. galeata. These and other direct effects of treatment on larvae of the phantom midge Chaoborus spp. resulted in clear indirect effects on populations of Calanoida, Ceriodaphnia, and Rotifera. Overall, faster recovery of the zooplankton community was observed in the treated sections of ditches that were sprayed for a smaller proportion of their surface area. Nevertheless, individual zooplankton populations showed considerable differences in rate of recovery. Cyclopoida showed a relatively slow rate of recovery even in the partially treated ditches. Daphnia gr. galeata recovered more rapidly in treated ditch sections in the presence of unsprayed ditch sections, illustrating the potential influence of unexposed refuges. Furthermore, the presence of refuges most likely dampened the magnitude and duration of indirect effects in the ditches treated with lufenuron.


Assuntos
Benzamidas/farmacologia , Ecossistema , Inseticidas/farmacologia , Zooplâncton/efeitos dos fármacos , Animais , Método de Monte Carlo , Análise Multivariada , Água
8.
Environ Toxicol Chem ; 23(6): 1479-98, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15376534

RESUMO

The fungicide fluazinam, the insecticide lambda-cyhalothrin, and the herbicides asulam and metamitron were applied to indoor freshwater microcosms (water volume approximately 0.6 m3). The treatment regime was based on a realistic application scenario in tulip cultivation. Concentrations of each pesticide were equal to 0%, 0.2%, 0.5%, 2%, and 5% spray drift emission of label-recommended rates. Contribution of compounds to the toxicity of the pesticide package was established by expressing their concentrations as fractions of toxic units. The fate of the compounds in the water, and responses of phytoplankton, zooplankton, periphyton, macroinvertebrates, macrophytes, decomposition, and water quality were followed for 13 weeks. The half-lives of lambda-cyhalothrin, metamitron, and fluazinam were 1 to 2 d; that of asulam was >30 d. No consistent effects could be demonstrated for the 0.2% treatment regime that was therefore considered the no-observed-effect concentration community (NOEC). The macroinvertebrate populations of Gammarus pulex, Asellus aquaticus, and Proasellus meridianus were the most sensitive end points, followed by species of copepods and cladocerans. Responses mainly were due to lambda-cyhalothrin. The 0.5% treatment regime resulted in short-term effects. Pronounced effects were observed at the 2% and 5% treatment levels. At the end of the experiment, the macrophyte biomass that consisted of Elodea nuttallii, showed a decline at the two highest treatment levels, asulam being the causal factor (NOEC: 0.5% treatment level). Primary production was reduced at the 5% treatment level only. In our experiment, the first-tier risk assessment procedure for individual compounds was adequate for protecting sensitive populations exposed to realistic combinations of pesticides. Spray drift reduction measures seem to be efficient in protecting aquatic ecosystems in agricultural areas.


Assuntos
Cadeia Alimentar , Modelos Teóricos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Invertebrados , Controle de Pragas , Fitoplâncton , Plantas , Dinâmica Populacional , Medição de Risco , Tulipa , Zooplâncton
9.
Environ Pollut ; 130(3): 403-26, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15182972

RESUMO

Three different risk assessment procedures are described that aim to protect freshwater habitats from risks of the photosynthesis-inhibiting herbicides metribuzin and metamitron. These procedures are (1) the first-tier approach, based on standard toxicity tests and the application of an assessment factor, (2) the Species Sensitivity Distribution (SSD) approach, based on laboratory tests with a wider array of species and the application of a statistical model to calculate the HCx (the Hazardous Concentration for x% of the species), and (3) the model ecosystem approach, based on the evaluation of treatment-related effects in field enclosures. A comparison of the risk assessment procedures reveals that the first-tier approach is the most conservative for metamitron and metribuzin, and that HC5 values (and even HC10 values) based on acute EC50 values of algae and aquatic vascular plants may be used to derive maximum permissible concentrations for single applications. For both compounds these HC5 values were very similar to the ecological threshold concentrations in the enclosure studies. In contrast to model ecosystem experiments, however, HCx values based on lab toxicity tests do not provide information on the recovery potential of sensitive endpoints and on indirect effects, which may be important for regulatory decision-making. In the enclosure study, indirect effects of metribuzin on invertebrate populations were observed at an exposure concentration that was approximately 20 times lower than the corresponding HC5 value based on lab toxicity data for aquatic invertebrates.


Assuntos
Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Água Doce , Invertebrados/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Medição de Risco/métodos , Especificidade da Espécie , Testes de Toxicidade/métodos
10.
Pest Manag Sci ; 60(1): 75-84, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14727744

RESUMO

Use of the insecticide lambda-cyhalothrin in agriculture may result in the contamination of water bodies, for example by spray drift. Therefore, the possible exposure of aquatic organisms to this insecticide needs to be evaluated. The exposure of the organisms may be reduced by the strong sorption of the insecticide to organic materials and its susceptibility to hydrolysis at the high pH values in the natural range. In experiments done in May and August, formulated lambda-cyhalothrin was mixed with the water body of enclosures in experimental ditches containing a bottom layer and macrophytes (at different densities) or phytoplankton. Concentrations of lambda-cyhalothrin in the water body and in the sediment layer, and contents in the plant compartment, were measured by gas-liquid chromatography at various times up to 1 week after application. Various water quality parameters were also measured. Concentrations of lambda-cyhalothrin decreased rapidly in the water column: 1 day after application, 24-40% of the dose remained in the water, and by 3 days it had declined to 1.8-6.5%. At the highest plant density, lambda-cyhalothrin residue in the plant compartment reached a maximum of 50% of the dose after 1 day; at intermediate and low plant densities, this maximum was only 3-11% of the dose (after 1-2 days). The percentage of the insecticide in the ditch sediment was 12% or less of the dose and tended to be lower at higher plant densities. Alkaline hydrolysis in the water near the surface of macrophytes and phytoplankton is considered to be the main dissipation process for lambda-cyhalothrin.


Assuntos
Inseticidas/metabolismo , Resíduos de Praguicidas/metabolismo , Plantas/metabolismo , Piretrinas/metabolismo , Poluentes Químicos da Água/metabolismo , Água/metabolismo , Cromatografia Gasosa , Sedimentos Geológicos/análise , Inseticidas/administração & dosagem , Nitrilas , Fitoplâncton/metabolismo , Piretrinas/administração & dosagem , Estações do Ano
11.
Ecotoxicology ; 11(3): 165-80, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12092751

RESUMO

Effects of chronic application of a mixture of the insecticides chlorpyrifos and lindane were studied in indoor freshwater microcosms. The exposure concentrations (based on 0, 0.005, 0.01, 0.05, 0.1 and 0.5 times the LC50 of the most sensitive standard test organism for each compound) were kept at a constant level for four weeks. The calculated mean concentrations for chlorpyrifos were found to be almost at their corresponding nominal level during the treatment period. The mean calculated lindane concentrations, however, were found to be 15-40% higher than intended. In the post treatment period both insecticides dissipated fast (t 1/2: chlorpyrifos 9 days, lindane 22 days) from the water phase. The concentrations of the mixture at the highest treatment level corresponded to 0.53 toxic units (TU) for Daphnia magna and 0.61 TU for the most sensitive fish. The decomposition of Populus leaves in litter bags was significantly lower at the three highest insecticide concentrations. The macroinvertebrate community was seriously affected at the three highest treatment levels, with Crustacea and the Chironomidae Corynoneura proving to be the most sensitive groups. Gastropoda and Oligochaeta were relatively insensitive and some taxa (e.g. Valvata piscinalis, juvenile Physa fontinalis, Nemertea and Stylaria lacustris) increased in numbers. The observed effects could be explained from the individual toxicity of the insecticides to the invertebrates, and did not indicate synergistic effects. A second paper (Van den Brink et al., 2002) addresses the effects on other endpoints, as well as the overall risk assessment of the insecticide mixture.


Assuntos
Clorpirifos/farmacologia , Peixes/metabolismo , Hexaclorocicloexano/farmacologia , Inseticidas/farmacologia , Invertebrados/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Animais , Clorpirifos/administração & dosagem , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Água Doce , Hexaclorocicloexano/administração & dosagem , Inseticidas/administração & dosagem , Dose Letal Mediana , Fatores de Tempo , Poluentes Químicos da Água/administração & dosagem
12.
Environ Toxicol Pharmacol ; 12(3): 147-56, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21782634

RESUMO

Oystercatchers (Haematopus ostralegus) foraging on the canal 'Zeehavenkanaal' in the Netherlands have been shown to accumulate appreciable amounts of contaminants, especially hexachlorobenzene. The present study was performed to assess the embryotoxic effects of the present contaminants. To this end, a two step approach was followed. In step one, the toxic effects of hexachlorobenzene were studied in the chicken embryo bioassay, using concentrations realistic for the field situation. In step two, yolks of oystercatcher eggs were extracted and the embryotoxic potency of this extract was studied in the same bioassay, using doses of 1, 10 and 100% of the contaminant load in one average egg. The extract contained hexachlorobenzene and PCBs. However, presence of other compounds could not be excluded, since these were not analysed. Hexachlorobenzene induced a nonsignificant decrease in lymphocyte density in the bursa of Fabricius. The egg extract caused a 3.5 fold induction of EROD activity at the highest dose applied, and decreased lymphocyte density in the bursa of Fabricius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...