Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 95(9): e10926, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37696540

RESUMO

Biochar (BC) use in water treatment is a promising approach that can simultaneously help address societal needs of clean water, food security, and climate change mitigation. However, novel BC water treatment technology approaches require operational testing in field pilot-scale scenarios to advance their technology readiness assessment. Therefore, the objective of this study is to evaluate the system performance of BC integrated into hydrous ferric oxide reactive filtration (Fe-BC-RF) with and without catalytic ozonation (CatOx) process in laboratory and field pilot-scale scenarios. For this investigation, Fe-BC-RF and Fe-CatOx-BC-RF pilot-scale trials were conducted on synthetic lake water variants and at three municipal water resource recovery facilities (WRRFs) at process flows of 0.05 and 0.6 L/s, respectively. Three native and two iron-modified BCs were used in these studies. The commercially available reactive filtration process (Fe-RF without BC) had 96%-98% total phosphorus (TP) removal from 0.075- and 0.22-mg/L TP, as orthophosphate process influent in these trials. With BC integration, phosphorus removal yielded 94%-98% with the same process-influent conditions. In WRRF field pilot-scale studies, the Fe-CatOx-BC-RF process removed 84%-99% of influent total phosphorus concentrations that varied from 0.12 to 8.1 mg/L. Nutrient analysis on BC showed that the recovered BC used in the pilot-scale studies had an increase in TP from its native concentration, with the Fe-amended BC showing better P recovery at 110% than its unmodified state, which was 16%. Lastly, the field WRRF Fe-CatOx-BC-RF process studies showed successful destructive removals at >90% for more than 20 detected micropollutants, thus addressing a critical human health and environmental water quality concern. The research demonstrated that integration of BC into Fe-CatOx-RF for micropollutant removal, disinfection, and nutrient recovery is an encouraging tertiary water treatment technology that can address sustainable phosphorus recycling needs and the potential for carbon-negative operation. PRACTITIONER POINTS: A pilot-scale hydrous ferric oxide reactive sand filtration process integrating biochar injection typically yields >90% total phosphorus removal to ultralow levels. Biochar, modified with iron, recovers phosphorus from wastewater, creating a P/N nutrient upcycled soil amendment. Addition of ozone to the process stream enables biochar-iron-ozone catalytic oxidation demonstrating typically excellent (>90%) micropollutant destructive removals for the compounds tested. A companion paper to this work explores life cycle assessment (LCA) and techno-economic analysis (TEA) to explore biochar water treatment integrated reactive filtration impacts, costs, and readiness. Biochar use can aid in long-term carbon sequestration by reducing the carbon footprint of advanced water treatment in a dose-dependent manner, including enabling an overall carbon-negative process.


Assuntos
Dióxido de Carbono , Águas Residuárias , Humanos , Carbono , Ferro
2.
J Environ Qual ; 49(5): 1286-1297, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016460

RESUMO

The subsurface transport of dissolved reactive phosphorus (DRP) from artificially drained agricultural fields can impair water quality, especially in no-till fields. The distribution of soil P in the wheat (Triticum aestivum L.)-dominated Palouse region in the inland U.S. Pacific Northwest varies greatly due to its steep and complex topography, and a legacy (∼130 yr) of excessive soil erosion and deposition processes. The primary goal of this research was to better understand the magnitude and temporal dynamics of DRP export from an artificial drain line and the variability of subsurface DRP leaching within a long-term, no-till field. Dissolved reactive P in drain line effluent was monitored across three water years. Large intact soil cores were extracted at contrasting field locations (toe and top slope positions) to measure DRP leachate concentration and relative P sorption. Drain line DRP concentration was predominantly >0.05 mg L-1 and often exceeded 0.1 mg L-1 during winter and early spring. Mean leachate DRP levels were significantly higher in toe slope cores than in top slope cores (0.11 and 0.02 mg L-1 , respectively). Saturated hydraulic conductivity varied widely across cores and was not correlated with leachate DRP concentration. All soil cores exhibited high P sorption potential, even under conditions of preferential flow. These findings suggest that much of the DRP transport in these landscapes is derived from P hotspots located in toe slope positions. Application of soil P fertilizer amounts in variable rates that account for spatial variability in P transport may minimize P enrichment and subsequent leaching in these locations.


Assuntos
Fósforo/análise , Poluentes do Solo/análise , Agricultura , Monitoramento Ambiental , Noroeste dos Estados Unidos
3.
PLoS One ; 15(1): e0228165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986180

RESUMO

Biodiversity is thought to prevent decline in community function in response to changing environmental conditions through replacement of organisms with similar functional capacity but different optimal growth characteristics. We examined how this concept translates to the within-gene level by exploring seasonal dynamics of within-gene diversity for genes involved in nitrogen cycling in hyporheic zone communities. Nitrification genes displayed low richness-defined as the number of unique within-gene phylotypes-across seasons. Conversely, denitrification genes varied in both richness and the degree to which phylotypes were recruited or lost. These results demonstrate that there is not a universal mechanism for maintaining community functional potential for nitrogen cycling activities, even across seasonal environmental shifts to which communities would be expected to be well adapted. As such, extreme environmental changes could have very different effects on the stability of the different nitrogen cycle activities. These outcomes suggest a need to modify existing conceptual models that link biodiversity to microbiome function to incorporate within-gene diversity. Specifically, we suggest an expanded conceptualization that 1) recognizes component steps (genes) with low diversity as potential bottlenecks influencing pathway-level function, and 2) includes variation in both the number of entities (e.g. species, phylotypes) that can contribute to a given process and the turnover of those entities in response to shifting conditions. Building these concepts into process-based ecosystem models represents an exciting opportunity to connect within-gene-scale ecological dynamics to ecosystem-scale services.


Assuntos
Biodiversidade , Microbiota/genética , Ciclo do Nitrogênio/genética , Estações do Ano , Fatores de Tempo
4.
Sci Total Environ ; 642: 742-753, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29920461

RESUMO

Biogeochemical hotspots are pervasive at terrestrial-aquatic interfaces, particularly within groundwater-surface water mixing zones (hyporheic zones), and they are critical to understanding spatiotemporal variation in biogeochemical cycling. Here, we use multi 'omic comparisons of hotspots to low-activity sediments to gain mechanistic insight into hyporheic zone organic matter processing. We hypothesized that microbiome structure and function, as described by metagenomics and metaproteomics, would distinguish hotspots from low-activity sediments by shifting metabolism towards carbohydrate-utilizing pathways and elucidate discrete mechanisms governing organic matter processing in each location. We also expected these differences to be reflected in the metabolome, whereby hotspot carbon (C) pools and metabolite transformations therein would be enriched in sugar-associated compounds. In contrast to expectations, we found pronounced phenotypic plasticity in the hyporheic zone microbiome that was denoted by similar microbiome structure, functional potential, and expression across sediments with dissimilar metabolic rates. Instead, diverse nitrogenous metabolites and biochemical transformations characterized hotspots. Metabolomes also corresponded more strongly to aerobic metabolism than bulk C or N content only (explaining 67% vs. 42% and 37% of variation respectively), and bulk C and N did not improve statistical models based on metabolome composition alone. These results point to organic nitrogen as a significant regulatory factor influencing hyporheic zone organic matter processing. Based on our findings, we propose incorporating knowledge of metabolic pathways associated with different chemical fractions of C pools into ecosystem models will enhance prediction accuracy.


Assuntos
Monitoramento Ambiental/métodos , Metaboloma/fisiologia , Carbono , Água Subterrânea , Microbiota , Rios
5.
Environ Microbiol ; 19(4): 1552-1567, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28276134

RESUMO

Subsurface groundwater-surface water mixing zones (hyporheic zones) have enhanced biogeochemical activity, but assembly processes governing subsurface microbiomes remain a critical uncertainty in understanding hyporheic biogeochemistry. To address this obstacle, we investigated (a) biogeographical patterns in attached and waterborne microbiomes across three hydrologically-connected, physicochemically-distinct zones (inland hyporheic, nearshore hyporheic and river); (b) assembly processes that generated these patterns; (c) groups of organisms that corresponded to deterministic changes in the environment; and (d) correlations between these groups and hyporheic metabolism. All microbiomes remained dissimilar through time, but consistent presence of similar taxa suggested dispersal and/or common selective pressures among zones. Further, we demonstrated a pronounced impact of deterministic assembly in all microbiomes as well as seasonal shifts from heterotrophic to autotrophic microorganisms associated with increases in groundwater discharge. The abundance of one statistical cluster of organisms increased with active biomass and respiration, revealing organisms that may strongly influence hyporheic biogeochemistry. Based on our results, we propose a conceptualization of hyporheic zone metabolism in which increased organic carbon concentrations during surface water intrusion support heterotrophy, which succumbs to autotrophy under groundwater discharge. These results provide new opportunities to enhance microbially-explicit ecosystem models describing hyporheic zone biogeochemistry and its influence over riverine ecosystem function.


Assuntos
Água Subterrânea/microbiologia , Microbiota , Rios/microbiologia , Microbiologia da Água , Movimentos da Água
6.
Front Microbiol ; 7: 1949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123379

RESUMO

Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...