Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 50(1): 51, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234931

RESUMO

Mycoplasma hyopneumoniae, the agent of porcine enzootic pneumonia (EP), is able to persist in the lung tissue and evade destruction by the host for several weeks. To understand the mechanism of pathogen survival, phagocytic uptake of M. hyopneumoniae by primary porcine alveolar macrophages was investigated. Intracellular location and survival of the pathogen were explored using gentamicin survival assays, flow cytometry and confocal microscopy of M. hyopneumoniae 232 labelled with green fluorescent protein (GFP). Following 1 h and 16 h of co-incubation, few viable M. hyopneumoniae were recovered from inside macrophages. Flow cytometric analysis of macrophages incubated with M. hyopneumoniae expressing GFP indicated that the mycoplasmas became associated with macrophages, but were shown to be extracellular when actin-dependent phagocytosis was blocked with cytochalasin D. Confocal microscopy detected GFP-labelled M. hyopneumoniae inside macrophages and the numbers increased modestly with time of incubation. Neither the addition of porcine serum complement or convalescent serum from EP-recovered pigs was able to enhance engulfment of M. hyopneumoniae. This investigation suggests that M. hyopneumoniae evades significant uptake by porcine alveolar macrophages and this may be a mechanism of immune escape by M. hyopneumoniae in the porcine respiratory tract.


Assuntos
Evasão da Resposta Imune , Macrófagos Alveolares/fisiologia , Mycoplasma hyopneumoniae/fisiologia , Pneumonia Suína Micoplasmática/fisiopatologia , Animais , Macrófagos Alveolares/virologia , Fagocitose , Suínos
2.
J Microbiol Methods ; 132: 34-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784642

RESUMO

Enumeration of Leptospira, the causative agent of leptospirosis, is arduous mainly because of its slow growth rate. Rapid and reliable tools for numbering leptospires are still lacking. The current standard for Leptospira cultures is the count on Petroff-Hausser chamber under dark-field microscopy, but this method remains time-consuming, requires well-trained operators and lacks reproducibility. Here we present the development of a flow-cytometry technique for counting leptospires. We showed that upon addition of fluorescent dyes, necessary to discriminate the bacterial population from debris, several live Leptospira strains could be enumerated at different physiologic states. Flow cytometry titers were highly correlated to counts with Petroff-Hausser chambers (R2>0.99). Advantages of flow cytometry lie in its rapidity, its reproducibility significantly higher than Petroff-Hausser method and its wide linearity range, from 104 to 108leptospires/ml. Therefore, flow cytometry is a fast, reproducible and sensitive tool representing a promising technology to replace current enumeration techniques of Leptospira in culture. We were also able to enumerate Leptospira in artificially infected urine and blood with a sensitivity limit of 105leptospires/ml and 106leptospires/ml, respectively, demonstrating the feasibility to use flow cytometry as first-line tool for diagnosis or bacterial dissemination studies.


Assuntos
Contagem de Colônia Microbiana/métodos , Citometria de Fluxo , Leptospira interrogans/isolamento & purificação , Leptospirose/diagnóstico , Animais , Cães , Estudos de Viabilidade , Leptospirose/sangue , Leptospirose/urina , Modelos Lineares , Microscopia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Front Microbiol ; 7: 1121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507962

RESUMO

Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: ß-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

4.
Virus Res ; 139(1): 106-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996421

RESUMO

Alternate reading frame proteins (ARFPs) resulting either from frameshifting, from transcriptional slippage or from internal initiation in the +1 open reading frame (ORF) of hepatitis C virus (HCV) core protein coding sequence have been described in vitro. As an approach to study the roles of these proteins, we investigate the subcellular localization of ARFPs fused with the green fluorescent protein (GFP) either at their N- or C-terminus. Most GFP fusion products have a diffuse localization, as revealed by confocal microscopy. One GFP chimeric protein, arising from internal initiation at codon 26 in the +1 ORF (ARFP(26-161)), is specifically targeted to mitochondria. Mitochondrial localization was confirmed by immunoblot with an anti-ARFP antibody of a mitochondria-enriched cellular fraction. Mitochondrial targeting of ARFP(26-161) mostly involved the N-terminal portion of the protein as revealed by the cellular localization of truncated mutants. Interestingly, ARFP(26-161) from both genotypes 1a and 1b, but not the protein from the genotype 2a JFH1 infectious sequence, exhibit mitochondrial localization. These results are the first concerning the cellular localization and the role of this HCV ARFP; they may serve as a platform for further studies on its mitochondrial effects and their role in the virus life cycle and pathogenesis.


Assuntos
Hepacivirus/fisiologia , Mitocôndrias/metabolismo , Fases de Leitura Aberta/genética , Proteínas do Core Viral/fisiologia , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hepacivirus/genética , Humanos , Microscopia Confocal , Mitocôndrias/virologia , Fases de Leitura Aberta/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...