Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 40(6): 1189-95, 2001 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11300817

RESUMO

The novel mononuclear and dinuclear complexes [Ru(trpy)(bpy)(apc)][PF(6)] and [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2) (bpy = 2,2'-bipyridine, trpy = 2,2':6',2' '-terpyridine, apc(-) = 4-azo(phenylcyanamido)benzene, and adpc(2)(-) = 4,4'-azodi(phenylcyanamido)) were synthesized and characterized by (1)H NMR, UV-vis, and cyclic voltammetry. Crystallography showed that the dinuclear Ru(II) complex crystallizes from diethyl ether/acetonitrile solution as [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2).2(acetonitrile).2(diethyl ether). Crystal structure data are as follows: crystal system triclinic, space group P1, with a, b, and c = 12.480(2), 13.090(3) and 14.147(3) A, respectively, alpha, beta, and gamma = 79.792(3), 68.027(3), and 64.447(3) degrees, respectively, V = 1933.3(6) A(3), and Z = 1. The structure was refined to a final R factor of 0.0421. The mixed-valence complex with metal ions, separated by a through-space distance of 19.5 A, is a class III system, having the comproportionation constant K(c) = 1.3 x 10(13) and an intervalence band at 1920 nm (epsilon(max) = 10 000 M(-1) cm(-1)), in dimethylformamide solution. The results of this study strongly suggest that the bridging ligand adpc(2-) can mediate metal-metal coupling through both hole-transfer and electron-transfer superexchange mechanisms.

2.
4.
Science ; 233(4767): 948-52, 1986 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-3016897

RESUMO

Kinetic experiments have conclusively shown that electron transfer can take place over large distances (greater than 10 angstroms) through protein interiors. Current research focuses on the elucidation of the factors that determine the rates of long-range electron-transfer reactions in modified proteins and protein complexes. Factors receiving experimental and theoretical attention include the donor-acceptor distance, changes in geometry of the donor and acceptor upon electron transfer, and the thermodynamic driving force. Recent experimental work on heme proteins indicates that the electron-transfer rate falls off exponentially with donor-acceptor distance at long range. The rate is greatly enhanced in proteins in which the structural changes accompanying electron transfer are very small.


Assuntos
Transporte de Elétrons , Hemeproteínas/metabolismo , Animais , Grupo dos Citocromos c/metabolismo , Cavalos/metabolismo , Metaloporfirinas/metabolismo , Mioglobina/metabolismo , Pseudomonas aeruginosa/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...