Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Breast Cancer ; 24(2): 93-102.e6, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38114366

RESUMO

BACKGROUND: PreciseDx Breast (PDxBr) is a digital test that predicts early-stage breast cancer recurrence within 6-years of diagnosis. MATERIALS AND METHODS: Using hematoxylin and eosin-stained whole slide images of invasive breast cancer (IBC) and artificial intelligence-enabled morphology feature array, microanatomic features are generated. Morphometric attributes in combination with patient's age, tumor size, stage, and lymph node status predict disease free survival using a proprietary algorithm. Here, analytical validation of the automated annotation process and extracted histologic digital features of the PDxBr test, including impact of methodologic variability on the composite risk score is presented. Studies of precision, repeatability, reproducibility and interference were performed on morphology feature array-derived features. The final risk score was assessed over 20-days with 2-operators, 2-runs/day, and 2-replicates across 8-patients, allowing for calculation of within-run repeatability, between-run and within-laboratory reproducibility. RESULTS: Analytical validation of features derived from whole slide images demonstrated a high degree of precision for tumor segmentation (0.98, 0.98), lymphocyte detection (0.91, 0.93), and mitotic figures (0.85, 0.84). Correlation of variation of the assay risk score for both reproducibility and repeatability were less than 2%, and interference from variation in hematoxylin and eosin staining or tumor thickness was not observed demonstrating assay robustness across standard histopathology preparations. CONCLUSION: In summary, the analytical validation of the digital IBC risk assessment test demonstrated a strong performance across all features in the model and complimented the clinical validation of the assay previously shown to accurately predict recurrence within 6-years in early-stage invasive breast cancer patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Prognóstico , Inteligência Artificial , Amarelo de Eosina-(YS) , Hematoxilina , Reprodutibilidade dos Testes
2.
Diagn Microbiol Infect Dis ; 82(2): 105-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25801781

RESUMO

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has dramatically altered the way microbiology laboratories identify clinical isolates. Direct blood culture (BC) detection may be hampered, however, by the presence of charcoal in BC bottles currently in clinical use. This study evaluates an in-house process for extraction and MALDI-TOF identification of Gram-negative bacteria directly from BC bottles containing charcoal. Three hundred BC aliquots were extracted by a centrifugation-filtration method developed in our research laboratory with the first 96 samples processed in parallel using Sepsityper® kits. Controls were colonies from solid media with standard phenotypic and MALDI-TOF identification. The identification of Gram-negative bacteria was successful more often via the in-house method compared to Sepsityper® kits (94.7% versus 78.1%, P≤0.0001). Our in-house centrifugation-filtration method was further validated for isolation and identification of Gram-negative bacteria (95%; n=300) directly from BC bottles containing charcoal.


Assuntos
Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Sangue/microbiologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/isolamento & purificação , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Centrifugação/métodos , Carvão Vegetal/isolamento & purificação , Filtração/métodos , Bactérias Gram-Negativas/química , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...