Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 31(7): 2150025, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130614

RESUMO

Recent technological advances show the feasibility of offline decoding speech from neuronal signals, paving the way to the development of chronically implanted speech brain computer interfaces (sBCI). Two key steps that still need to be addressed for the online deployment of sBCI are, on the one hand, the definition of relevant design parameters of the recording arrays, on the other hand, the identification of robust physiological markers of the patient's intention to speak, which can be used to online trigger the decoding process. To address these issues, we acutely recorded speech-related signals from the frontal cortex of two human patients undergoing awake neurosurgery for brain tumors using three different micro-electrocorticographic ([Formula: see text]ECoG) devices. First, we observed that, at the smallest investigated pitch (600[Formula: see text][Formula: see text]m), neighboring channels are highly correlated, suggesting that more closely spaced electrodes would provide some redundant information. Second, we trained a classifier to recognize speech-related motor preparation from high-gamma oscillations (70-150[Formula: see text]Hz), demonstrating that these neuronal signals can be used to reliably predict speech onset. Notably, our model generalized both across subjects and recording devices showing the robustness of its performance. These findings provide crucial information for the design of future online sBCI.


Assuntos
Interfaces Cérebro-Computador , Fala , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Eletrocorticografia , Eletrodos , Humanos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4464-4467, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441342

RESUMO

Micro-electrode arrays for electrocorticography (ECoG) represent the best compromise between invasiveness and signal quality, as they are surface devices that still allow high sensitivity recordings. In this work, an assessment of different technical aspects determining the ultimate performance of ultra-conformable polyimide-based µECoG arrays is conducted via a finite element model, impedance spectroscopy measurements and recordings of sensorimotor evoked potentials (SEPs) in rats. The finite element model proves that conformability of thin-film arrays can be achieved with polyimide, a non-stretchable material, by adjusting its thickness according to the curvature of the targeted anatomical area. From the electrochemical characterization of the devices, intrinsic thermal noise of platinum and gold electrodes is estimated to be 3-5 µV. Results show that electrode size and in vitro impedance do not influence the amplitude of the recorded SEPs. However, the use of a reference on-skull (a metal screw), as compared to reference on-array (a metal electrode surrounding the recording area), provides higher-amplitude SEPs. Additionally, the incorporation of a grounded metal shield in the thin-film devices limits crosstalk between tracks and does not compromise the recording capabilities of the arrays.


Assuntos
Eletrocorticografia , Potenciais Evocados , Microeletrodos , Animais , Impedância Elétrica , Análise de Elementos Finitos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...