Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Hum Genet ; 110(9): 1590-1599, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683613

RESUMO

The island of St Helena played a crucial role in the suppression of the transatlantic slave trade. Strategically located in the middle of the South Atlantic, it served as a staging post for the Royal Navy and reception point for enslaved Africans who had been "liberated" from slave ships intercepted by the British. In total, St Helena received approximately 27,000 liberated Africans between 1840 and 1867. Written sources suggest that the majority of these individuals came from West Central Africa, but their precise origins are unknown. Here, we report the results of ancient DNA analyses that we conducted as part of a wider effort to commemorate St Helena's liberated Africans and to restore knowledge of their lives and experiences. We generated partial genomes (0.1-0.5×) for 20 individuals whose remains had been recovered during archaeological excavations on the island. We compared their genomes with genotype data for over 3,000 present-day individuals from 90 populations across sub-Saharan Africa and conclude that the individuals most likely originated from different source populations within the general area between northern Angola and Gabon. We also find that the majority (17/20) of the individuals were male, supporting a well-documented sex bias in the latter phase of the transatlantic slave trade. The study expands our understanding of St Helena's liberated African community and illustrates how ancient DNA analyses can be used to investigate the origins and identities of individuals whose lives were bound up in the story of slavery and its abolition.


Assuntos
População Africana , Pessoas Escravizadas , Humanos , Feminino , Masculino , DNA Antigo , População Negra/genética , Genótipo
3.
Nat Commun ; 14(1): 3660, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339987

RESUMO

Due to postmortem DNA degradation and microbial colonization, most ancient genomes have low depth of coverage, hindering genotype calling. Genotype imputation can improve genotyping accuracy for low-coverage genomes. However, it is unknown how accurate ancient DNA imputation is and whether imputation introduces bias to downstream analyses. Here we re-sequence an ancient trio (mother, father, son) and downsample and impute a total of 43 ancient genomes, including 42 high-coverage (above 10x) genomes. We assess imputation accuracy across ancestries, time, depth of coverage, and sequencing technology. We find that ancient and modern DNA imputation accuracies are comparable. When downsampled at 1x, 36 of the 42 genomes are imputed with low error rates (below 5%) while African genomes have higher error rates. We validate imputation and phasing results using the ancient trio data and an orthogonal approach based on Mendel's rules of inheritance. We further compare the downstream analysis results between imputed and high-coverage genomes, notably principal component analysis, genetic clustering, and runs of homozygosity, observing similar results starting from 0.5x coverage, except for the African genomes. These results suggest that, for most populations and depths of coverage as low as 0.5x, imputation is a reliable method that can improve ancient DNA studies.


Assuntos
Genoma Humano , Técnicas de Genotipagem , Humanos , Técnicas de Genotipagem/métodos , Genoma Humano/genética , DNA Antigo , Genótipo , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
4.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36637197

RESUMO

SUMMARY: We introduce mapache, a flexible, robust and scalable pipeline to map, quantify and impute ancient and present-day DNA in a reproducible way. Mapache is implemented in the workflow manager Snakemake and is optimized for low-space consumption, allowing to efficiently (re)map large datasets-such as reference panels and multiple extracts and libraries per sample - to one or several genomes. Mapache can easily be customized or combined with other Snakemake tools. AVAILABILITY AND IMPLEMENTATION: Mapache is freely available on GitHub (https://github.com/sneuensc/mapache). An extensive manual is provided at https://github.com/sneuensc/mapache/wiki. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
DNA Antigo , Software , Genoma , Fluxo de Trabalho
5.
Cell ; 184(10): 2565-2586.e21, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33930288

RESUMO

The Cycladic, the Minoan, and the Helladic (Mycenaean) cultures define the Bronze Age (BA) of Greece. Urbanism, complex social structures, craft and agricultural specialization, and the earliest forms of writing characterize this iconic period. We sequenced six Early to Middle BA whole genomes, along with 11 mitochondrial genomes, sampled from the three BA cultures of the Aegean Sea. The Early BA (EBA) genomes are homogeneous and derive most of their ancestry from Neolithic Aegeans, contrary to earlier hypotheses that the Neolithic-EBA cultural transition was due to massive population turnover. EBA Aegeans were shaped by relatively small-scale migration from East of the Aegean, as evidenced by the Caucasus-related ancestry also detected in Anatolians. In contrast, Middle BA (MBA) individuals of northern Greece differ from EBA populations in showing ∼50% Pontic-Caspian Steppe-related ancestry, dated at ca. 2,600-2,000 BCE. Such gene flow events during the MBA contributed toward shaping present-day Greek genomes.


Assuntos
Civilização/história , Genoma Humano , Genoma Mitocondrial , Migração Humana/história , DNA Antigo , Grécia Antiga , História Antiga , Humanos
6.
Genome Biol ; 20(1): 246, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747936

RESUMO

Recent research into structural variants (SVs) has established their importance to medicine and molecular biology, elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale chromosome evolution-giving rise to the differences within populations and among species. Nevertheless, characterizing SVs and determining the optimal approach for a given experimental design remains a computational and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges. Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large, complex variations and present computational methods for each approach.


Assuntos
Variação Estrutural do Genoma , Genômica/métodos , Animais , Genômica/tendências , Humanos
7.
BMC Genomics ; 19(1): 608, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107783

RESUMO

BACKGROUND: As most ancient biological samples have low levels of endogenous DNA, it is advantageous to enrich for specific genomic regions prior to sequencing. One approach-in-solution capture-enrichment-retrieves sequences of interest and reduces the fraction of microbial DNA. In this work, we implement a capture-enrichment approach targeting informative regions of the Y chromosome in six human archaeological remains excavated in the Caribbean and dated between 200 and 3000 years BP. We compare the recovery rate of Y-chromosome capture (YCC) alone, whole-genome capture followed by YCC (WGC + YCC) versus non-enriched (pre-capture) libraries. RESULTS: The six samples show different levels of initial endogenous content, with very low (< 0.05%, 4 samples) or low (0.1-1.54%, 2 samples) percentages of sequenced reads mapping to the human genome. We recover 12-9549 times more targeted unique Y-chromosome sequences after capture, where 0.0-6.2% (WGC + YCC) and 0.0-23.5% (YCC) of the sequence reads were on-target, compared to 0.0-0.00003% pre-capture. In samples with endogenous DNA content greater than 0.1%, we found that WGC followed by YCC (WGC + YCC) yields lower enrichment due to the loss of complexity in consecutive capture experiments, whereas in samples with lower endogenous content, the libraries' initial low complexity leads to minor proportions of Y-chromosome reads. Finally, increasing recovery of informative sites enabled us to assign Y-chromosome haplogroups to some of the archeological remains and gain insights about their paternal lineages and origins. CONCLUSIONS: We present to our knowledge the first in-solution capture-enrichment method targeting the human Y-chromosome in aDNA sequencing libraries. YCC and WGC + YCC enrichments lead to an increase in the amount of Y-DNA sequences, as compared to libraries not enriched for the Y-chromosome. Our probe design effectively recovers regions of the Y-chromosome bearing phylogenetically informative sites, allowing us to identify paternal lineages with less sequencing than needed for pre-capture libraries. Finally, we recommend considering the endogenous content in the experimental design and avoiding consecutive rounds of capture, as clonality increases considerably with each round.


Assuntos
Cromossomos Humanos Y , DNA Antigo/análise , DNA Antigo/isolamento & purificação , Biblioteca Gênica , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Genômica , História Antiga , Humanos
8.
Proc Natl Acad Sci U S A ; 115(17): E4006-E4012, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632188

RESUMO

Patagonia was the last region of the Americas reached by humans who entered the continent from Siberia ∼15,000-20,000 y ago. Despite recent genomic approaches to reconstruct the continental evolutionary history, regional characterization of ancient and modern genomes remains understudied. Exploring the genomic diversity within Patagonia is not just a valuable strategy to gain a better understanding of the history and diversification of human populations in the southernmost tip of the Americas, but it would also improve the representation of Native American diversity in global databases of human variation. Here, we present genome data from four modern populations from Central Southern Chile and Patagonia (n = 61) and four ancient maritime individuals from Patagonia (∼1,000 y old). Both the modern and ancient individuals studied in this work have a greater genetic affinity with other modern Native Americans than to any non-American population, showing within South America a clear structure between major geographical regions. Native Patagonian Kawéskar and Yámana showed the highest genetic affinity with the ancient individuals, indicating genetic continuity in the region during the past 1,000 y before present, together with an important agreement between the ethnic affiliation and historical distribution of both groups. Lastly, the ancient maritime individuals were genetically equidistant to a ∼200-y-old terrestrial hunter-gatherer from Tierra del Fuego, which supports a model with an initial separation of a common ancestral group to both maritime populations from a terrestrial population, with a later diversification of the maritime groups.


Assuntos
Variação Genética , Genoma Humano , Indígenas Sul-Americanos/genética , Chile , Feminino , História Antiga , Humanos , Indígenas Sul-Americanos/história , Masculino
9.
Mol Ecol Resour ; 17(3): 508-522, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27566552

RESUMO

High-throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best-suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture-enrichment methods represent cost-effective alternatives that increase the sequencing focus on the endogenous fraction, whether it is from mitochondrial or nuclear genomes, or parts thereof. Here, we explored experimental parameters that could impact the efficacy of MYbaits in-solution capture assays of ~5000 nuclear loci or the whole genome. We found that varying quantities of the starting probes had only moderate effect on capture outcomes. Starting DNA, probe tiling, the hybridization temperature and the proportion of endogenous DNA all affected the assay, however. Additionally, probe features such as their GC content, number of CpG dinucleotides, sequence complexity and entropy and self-annealing properties need to be carefully addressed during the design stage of the capture assay. The experimental conditions and probe molecular features identified in this study will improve the recovery of genetic information extracted from degraded and ancient remains.


Assuntos
DNA Antigo/análise , Análise de Sequência de DNA/métodos , Composição de Bases , Ilhas de CpG , Sondas de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...