RESUMO
Prostate cancer (PCa) is a common and deadly disease in men. It is often diagnosed at advanced stages, at which point patients are treated mainly with docetaxel (DTX), which is effective but limited by resistance and side effects. Overactivation of the transcription factors NF-κB and STAT-3 plays a critical role in the development, progression, and chemoresistance of PCa. In this regard, the blockade of NF-κB with pentoxifylline (PTX) or STAT-3 with Stattic (STT) is known to increase the sensitivity of tumor cells to chemotherapy in both in vitro and in vivo models. We investigated whether simultaneous blockade with PTX and STT increases the efficacy of the DTX treatment in inducing apoptosis in metastatic castration-resistant PCa DU-145 cells. Our results showed that the combination of PTX + STT led to higher levels of apoptosis, regardless of whether or not DTX was present in the treatment. Determining caspases and ΔΨm indicates that the intrinsic caspase pathway of apoptosis is principally favored. In addition, this combination inhibited proliferation and colony formation and arrested the cell cycle in the G1 phase. These results indicate that the combination of the PTX + STAT-3 inhibitor could potentiate DTX effectively, opening the possibility of effective treatments in PCa.
RESUMO
Gastric cancer (GC) is the fourth leading cause of cancer death in the world, and there is a demand for new therapeutic agents to treat GC. Metformin has been demonstrated to be an antineoplastic agent in some types of cancer; however, it has not been sufficiently valued in treating GC because the effect of metformin in combination with chemotherapy regimens has not yet been evaluated. The present study aimed to evaluate the mechanisms underlying cell death induced by metformin alone or when combined with chemotherapy. The cytogenetic characteristics of the NCI-N87 cell line were determined by fluorescence in situ hybridization (FISH). To determine viability, the cells were treated with metformin, epirubicin, cisplatin, docetaxel and 5-fluorouracil (individually and at different concentrations). Subsequently, the cells were treated with metformin alone, and in combination with the chemotherapeutic drugs and the epirubicin + cisplatin + 5-fluorouracil, docetaxel + cisplatin + 5-fluorouracil, and cisplatin + 5-fluorouracil regimens. Cell viability, proliferation and mitochondrial membrane potential (ΔΨm) were analyzed by spectrophotometry. Apoptosis, caspase activity and cell cycle progression were assessed by flow cytometry. Finally, light microscopy was used to evaluate senescence and clonogenicity. The results revealed that metformin, alone and when combined with chemotherapy, increased the proportion of apoptotic cells, promoted the loss of ΔΨm, and induced apoptosis through caspase activity in GC cells. Moreover, metformin decreased cell proliferation. In addition, metformin alone did not induce senescence and it counteracted the effects of chemotherapy-induced senescence in GC cells. Additionally, metformin, alone and when combined with chemotherapy, decreased the clonogenic capacity of NCI-N87 GC cells. In conclusion, metformin may increase the effects of chemotherapy on NCI-N87 cell death and could represent an option to improve the treatment of GC.
RESUMO
Cervical cancer (CC) is one of the most common and deadly types of female cancer worldwide. Late diagnosis in CC increases the risk of tumor cells spreading to distant organs (metastasis). The epithelial-mesenchymal transition (EMT) is a fundamental process of cancer metastasis. Inflammation can lead to tumor progression, EMT induction, and metastasis. The inflammatory microenvironment is a potent inducer of EMT; inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-α) and Transforming growth factor-beta (TGF-ß1) activate transcriptional factors such as STAT3, Snail, Smad, and the Nuclear Factor kappa light-chain-enhancer of activated beta cells (NF-κΒ), which drive EMT. Anti-inflammatory compounds may be an option in the disruption of EMT. PenToXifylline (PTX) possesses potent anti-inflammatory effects by inhibiting NF-κB activity. In addition, PTX exerts an anti-fibrotic effect by decreasing Smad2/3/4. We hypothesize that PTX could exert anti-EMT effects. CaSki human cervical tumor cells were exposed to TNF-α 10 ng/mL and TGF-ß1 alone or in combination for 5 days. Our results revealed that TNF-α and TGF-ß1 induced N-cadherin and Vimentin, confirming the induction of EMT. Furthermore, the combination of cytokines synergized the expression of mesenchymal proteins, enhanced IκBα and p65 phosphorylation, and upregulated Serpin family E member 1 (SERPINE1) mRNA. PTX pretreatment prior to the addition of TNF-α and TGF-ß1 significantly reduced N-cadherin and Vimentin levels. To our knowledge, this is the first time that this effect of PTX has been reported. Additionally, PTX reduced the phosphorylation of IκB-α and p65 and significantly decreased SERPINE1 expression, cell proliferation, migration, and invasion. In conclusion, PTX may counteract EMT in cervical cancer cells by decreasing the NF-κB and SERPINE1.