Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086506

RESUMO

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Assuntos
Charadriiformes , Mercúrio , Selênio , Oligoelementos , Animais , Humanos , Mercúrio/análise , Isótopos de Carbono , Regiões Árticas , Monitoramento Ambiental
2.
Ecology ; 104(5): e4034, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36938929

RESUMO

Climate change is transforming bioenergetic landscapes, challenging behavioral and physiological coping mechanisms. A critical question involves whether animals can adjust behavioral patterns and energy expenditure to stabilize fitness given reconfiguration of resource bases, or whether limits to plasticity ultimately compromise energy balance. In the Arctic, rapidly warming temperatures are transforming food webs, making Arctic organisms strong models for understanding biological implications of climate change-related environmental variability. We examined plasticity in the daily energy expenditure (DEE) of an Arctic seabird, the little auk (Alle alle) in response to variability in climate change-sensitive drivers of resource availability, sea surface temperature (SST) and sea ice coverage (SIC), and tested the hypothesis that energetic ceilings and exposure to mercury, an important neurotoxin and endocrine disrupter in marine ecosystems, may limit scope for plasticity. To estimate DEE, we used accelerometer data obtained across years from two colonies exposed to distinct environmental conditions (Ukaleqarteq [UK], East Greenland; Hornsund [HS], Svalbard). We proceeded to model future changes in SST to predict energetic impacts. At UK, high flight costs linked to low SIC and high SST drove DEE from below to above 4 × basal metabolic rate (BMR), a proposed energetic threshold for breeding birds. However, DEE remained below 7 × BMR, an alternative threshold, and did not plateau. Birds at HS experienced higher, relatively invariable SST, and operated above 4 × BMR. Mercury exposure was unrelated to DEE, and fitness remained stable. Thus, plasticity in DEE currently buffers fitness, providing resiliency against climate change. Nevertheless, modeling suggests that continued warming of SST may promote accelerating increases in DEE, which may become unsustainable.


Assuntos
Charadriiformes , Mercúrio , Animais , Ecossistema , Aves , Adaptação Psicológica
3.
Environ Sci Technol ; 57(5): 2054-2063, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36652233

RESUMO

Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.


Assuntos
Charadriiformes , Mercúrio , Animais , Ecossistema , Mudança Climática , Mercúrio/análise , Regiões Árticas , Aves , Monitoramento Ambiental
4.
Sci Total Environ ; 847: 157352, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843319

RESUMO

Climate change has repeatedly been shown to impact the demography and survival of marine top predators. However, most evidence comes from single populations of widely distributed species, limited mainly to polar and subpolar environments. Here, we aimed to evaluate the influence of environmental conditions on the survival of a tropical and migratory seabird over the course of its annual cycle. We used capture-mark-recapture data from three populations of Bulwer's petrel (Bulweria bulwerii) spread across the NE Atlantic Ocean, from the Azores, Canary, and Cabo Verde Islands (including temperate to tropical zones). We also inferred how the survival of this seabird might be affected under different climatic scenarios, defined by the Intergovernmental Panel on Climate Change. Among the environmental variables whose effect we evaluated (North Atlantic Oscillation index, Southern Oscillation Index, Sea Surface Temperature [SST] and wind speed), SST estimated for the breeding area and season was the variable with the greatest influence on adult survival. Negative effects of SST increase emerged across the three populations, most likely through indirect trophic web interactions. Unfortunately, our study also shows that the survival of Bulwer's petrel will be profoundly affected by the different scenarios of climate change, even with the most optimistic trajectory involving the lowest greenhouse gas emission. Furthermore, for the first time, our study predicts stronger impacts of climate change on tropical populations than on subtropical and temperate ones. This result highlights the devastating effect that climate change may also have on tropical areas, and the importance of considering multi-population approaches when evaluating its impacts which may differ across species distributions.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Animais , Oceano Atlântico , Aves , Estações do Ano , Clima Tropical
5.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658194

RESUMO

Migratory marine species cross political borders and enter the high seas, where the lack of an effective global management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations from every country made extensive use of the high seas, indicating the stake each country has in the management of biodiversity in international waters. We quantified the links among national populations of these threatened seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This work makes explicit the relative responsibilities that each country and RFMO has for the management of shared biodiversity, providing invaluable information for the conservation and management of migratory species in the marine realm.

6.
Biol Lett ; 17(3): 20200804, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33757296

RESUMO

Costs of reproduction on survival have captured the attention of researchers since life history theory was formulated. Adults of long-lived species may increase survival by reducing their breeding effort or even skipping reproduction. In this study, we aimed to evaluate the costs of current reproduction on survival and whether skipping reproduction increases adult survival in a long-lived seabird. We used capture-mark-recapture data (1450 encounters) from two populations of Bulwer's petrel (Bulweria bulwerii), breeding in the Azores and Canary Islands, North Atlantic Ocean. Using a multi-event model with two different breeding statuses (breeders versus non-breeders), we calculated probabilities of survival and of transitions between breeding statuses, evaluating potential differences between sexes. Females had lower survival probabilities than males, independent of their breeding status. When considering breeding status, breeding females had lower survival probabilities than non-breeding females, suggesting costs of reproduction on survival. Breeding males had higher survival probabilities than non-breeding males, suggesting that males do not incur costs of reproduction on survival and that only the highest quality males have access to breeding. The highest and the lowest probabilities of skipping reproduction were found in breeding males from the Azores and in breeding males from the Canary Islands, respectively. Intermediate values were observed in the females from both populations. This result is probably due to differences in the external factors affecting both populations, essentially predation pressure and competition. The existence of sex-specific costs of reproduction on survival in several populations of this long-lived species may have important implications for species population dynamics.


Assuntos
Aves , Reprodução , Animais , Oceano Atlântico , Açores , Feminino , Masculino , Espanha
7.
PLoS One ; 13(6): e0198667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29894489

RESUMO

Studying the movements of oceanic migrants has been elusive until the advent of several tracking devices, such as the light-level geolocators. Stable isotope analysis (SIA) offers a complementary approach to infer areas used year-round, but its suitability in oceanic environments remains almost unexplored. To evaluate SIA as a tool for inferring movements of oceanic migrants, we sampled an oceanic seabird, the Bulwer's petrel, Bulweria bulwerii, in four breeding colonies spread along its Atlantic distribution. We first studied the species moulting pattern from 29 corpses collected in the colonies. Secondly, based on this moult knowledge, we selected three feathers from tracked birds to infer their breeding and non-breeding grounds using SIA: the 1st primary (P1), the 8th secondary (S8) and the 6th rectrix (R6) feathers. Birds migrated to two main non-breeding areas, the Central or the South Atlantic Ocean. P1 showed similar isotopic values among petrels from different breeding colonies, suggesting this feather is replaced early in the non-breeding period in a common area used by most birds, the Central Atlantic. S8 and R6 feathers correctly assigned 92% and 81%, respectively, of the birds to their non-breeding areas, suggesting they were replaced late in season, when birds were settled in their main non-breeding grounds. Our results showed that the isotopic baseline levels of the Central and South Atlantic are propagated through the food web until reaching top predators, suggesting these ratios can be used to infer the movement of long-distance migrants among oceanic water masses.


Assuntos
Migração Animal , Aves/fisiologia , Isótopos de Carbono/análise , Plumas/química , Marcação por Isótopo/métodos , Isótopos de Nitrogênio/análise , Movimentos da Água , Animais , Monitoramento Ambiental/métodos , Geografia , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...