Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(14): e2201442, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998112

RESUMO

Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives is reviewed. First, optical-driven technologies are looked upon, as these allow biomaterials and living cells to be manipulated with microsized precision and present opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, the growing field of optofluidics is discussed, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, advances in optical cancer biosensing are reviewed, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. Photonic technologies' current challenges and caveats in microfluidic 3D cancer models are overviewed, outlining future research avenues that may catapult the field.


Assuntos
Microfluídica , Células Neoplásicas Circulantes , Humanos , Microfluídica/métodos , Óptica e Fotônica , Materiais Biocompatíveis , Modelos Biológicos , Microambiente Tumoral
2.
Cell Rep Methods ; 2(9): 100280, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36160044

RESUMO

In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature. Live imaging of red blood cells within myocardial microvasculature reveals pulsatile flow generated by beating hiPSC-CMs. This study therefore demonstrates a functionally vascularized in vitro model of human myocardium with widespread potential applications in basic and translational research.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Humanos , Miocárdio , Miócitos Cardíacos , Técnicas de Cocultura
3.
Biotechnol Bioeng ; 118(8): 3128-3137, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019719

RESUMO

Heart-on-chip is an unprecedented technology for recapitulating key biochemical and biophysical cues in cardiac pathophysiology. Several designs have been proposed to improve its ability to mimic the native tissue and establish it as a reliable research platform. However, despite mimicking one of most vascularized organs, reliable strategies to deliver oxygen and substrates to densely packed constructs of metabolically demanding cells remain unsettled. Herein, we describe a new heart-on-chip platform with precise fluid control, integrating an on-chip peristaltic pump, allowing automated and fine control over flow on channels flanking a 3D cardiac culture. The application of distinct flow rates impacted on temporal dynamics of microtissue structural and transcriptional maturation, improving functional performance. Moreover, a widespread transcriptional response was observed, suggesting flow-mediated activation of critical pathways of cardiomyocyte structural and functional maturation and inhibition of cardiomyocyte hypoxic injury. In conclusion, the present design represents an important advance in bringing engineered cardiac microtissues closer to the native heart, overcoming traditional bulky off-chip fluid handling systems, improving microtissue performance, and matching oxygen and energy substrate requirements of metabolically active constructs, avoiding cellular hypoxia. Distinct flow patterns differently impact on microtissue performance and gene expression program.


Assuntos
Bombas de Infusão , Dispositivos Lab-On-A-Chip , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Perfusão , Animais , Hipóxia Celular , Ratos , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
4.
Biofabrication ; 13(3)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561845

RESUMO

Cardiac toxicity still represents a common adverse outcome causing drug attrition and post-marketing withdrawal. The development of relevantin vitromodels resembling the human heart recently opened the path towards a more accurate detection of drug-induced human cardiac toxicity early in the drug development process. Organs-on-chip have been proposed as promising tools to recapitulatein vitrothe key aspects of thein vivocardiac physiology and to provide a means to directly analyze functional readouts. In this scenario, a new device capable of continuous monitoring of electrophysiological signals from functionalin vitrohuman hearts-on-chip is here presented. The development of cardiac microtissues was achieved through a recently published method to control the mechanical environment, while the introduction of a technology consisting in micro-electrode coaxial guides allowed to conduct direct and non-destructive electrophysiology studies. The generated human cardiac microtissues exhibited synchronous spontaneous beating, as demonstrated by multi-point and continuous acquisition of cardiac field potential, and expression of relevant genes encoding for cardiac ion-channels. A proof-of-concept pharmacological validation on three drugs proved the proposed model to potentially be a powerful tool to evaluate functional cardiac toxicity.


Assuntos
Fenômenos Eletrofisiológicos , Coração , Eletricidade , Eletrodos , Coração/fisiologia , Humanos , Miócitos Cardíacos
5.
Methods Cell Biol ; 146: 69-84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30037467

RESUMO

With the increasing attention on cardiovascular disorders and the current inability of pre-clinical models to accurately predict human physiology, the need for advanced and reliable heart in vitro models is paramount. Microfabrication technologies provide potential solutions in the organs-on-chip systems: microengineered devices where cell cultures can be hosted and cultured to develop three-dimensional models or microtissues with high similarity to human physiology. We here described the fabrication and operation procedures for a beating heart-on-a-chip. The device features a culture region for a 3D cardiac microtissue and a system for applying tuned mechanical stimulation during culture to improve cardiac development. We additionally describe procedures for characterizing tissue maturation via immunofluorescence and functional evaluations of microtissue contractility.


Assuntos
Coração/fisiologia , Dispositivos Lab-On-A-Chip , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Humanos , Microfluídica
6.
APL Bioeng ; 2(4): 046102, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31069324

RESUMO

Organs-on-chip technology has recently emerged as a promising tool to generate advanced cardiac tissue in vitro models, by recapitulating key physiological cues of the native myocardium. Biochemical, mechanical, and electrical stimuli have been investigated and demonstrated to enhance the maturation of cardiac constructs. However, the combined application of such stimulations on 3D organized constructs within a microfluidic platform was not yet achieved. For this purpose, we developed an innovative microbioreactor designed to provide a uniform electric field and cyclic uniaxial strains to 3D cardiac microtissues, recapitulating the complex electro-mechanical environment of the heart. The platform encompasses a compartment to confine and culture cell-laden hydrogels, a pressure-actuated chamber to apply a cyclic uniaxial stretch to microtissues, and stainless-steel electrodes to accurately regulate the electric field. The platform was exploited to investigate the effect of two different electrical stimulation patterns on cardiac microtissues from neonatal rat cardiomyocytes: a controlled electric field [5 V/cm, or low voltage (LV)] and a controlled current density [74.4 mA/cm2, or high voltage (HV)]. Our results demonstrated that LV stimulation enhanced the beating properties of the microtissues. By fully exploiting the platform, we combined the LV electrical stimulation with a physiologic mechanical stretch (10% strain) to recapitulate the key cues of the native cardiac microenvironment. The proposed microbioreactor represents an innovative tool to culture improved miniaturized cardiac tissue models for basic research studies on heart physiopathology and for drug screening.

8.
Biomed Microdevices ; 19(1): 11, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28144839

RESUMO

Peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) is a highly specific molecular method widely used for microbial identification. Nonetheless, and due to the detection limit of this technique, a time-consuming pre-enrichment step is typically required before identification. In here we have developed a lab-on-a-chip device to concentrate cell suspensions and speed up the identification process in yeasts. The PNA-FISH protocol was optimized to target Saccharomyces cerevisiae, a common yeast that is very relevant for several types of food industries. Then, several coin-sized microfluidic devices with different geometries were developed. Using Computational fluid dynamics (CFD), we modeled the hydrodynamics inside the microchannels and selected the most promising options. SU-8 structures were fabricated based on the selected designs and used to produce polydimethylsiloxane-based microchips by soft lithography. As a result, an integrated approach combining microfluidics and PNA-FISH for the rapid identification of S. cerevisiae was achieved. To improve fluid flow inside microchannels and the PNA-FISH labeling, oxygen plasma treatment was applied to the microfluidic devices and a new methodology to introduce the cell suspension and solutions into the microchannels was devised. A strong PNA-FISH signal was observed in cells trapped inside the microchannels, proving that the proposed methodology works as intended. The microfluidic designs and PNA-FISH procedure described in here should be easily adaptable for detection of other microorganisms of similar size.


Assuntos
Hibridização in Situ Fluorescente/instrumentação , Dispositivos Lab-On-A-Chip , Ácidos Nucleicos Peptídicos/metabolismo , Saccharomyces cerevisiae/isolamento & purificação , Desenho de Equipamento , Oxigênio/química , Gases em Plasma/química , Saccharomyces cerevisiae/metabolismo
9.
Micromachines (Basel) ; 7(12)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30404405

RESUMO

Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...