Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(45): 30376-30385, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805669

RESUMO

The objective of this study was to design, develop, and quantify the effectiveness of a simple method to facilitate the smart delivery of antimicrobial essential oils (EOs) via their absorption into a chemically bound high surface area support material. To this end, Santa Barbara Amorphous 15 (SBA-15) was functionalized by means of a post-synthetic reaction using (3-aminopropyl)triethoxysilane (APTES) to create an amine-terminated SBA-15 (SBA-APTES), and functionalization was confirmed by FTIR, TGA, and N2 isotherm analysis. Amine-modified SBA-15 was then grafted to a 3-glycidyloxypropyltrimethoxysilane (GPTS)-modified silicon (Si) surface (Si-GPTS), and subsequent attachment to the GPTS-modified surface was confirmed through XPS, dynamic contact angle, and SEM analysis. The smart delivery devices (SBA-15 and SBA-APTES) were then loaded with antimicrobial oregano essential oil (OEO) and the antimicrobial activity was assessed against common food spoilage microorganisms Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Pseudomonas fluorescens. Antimicrobial activity results indicate that both SBA-OEO and SBA-APTES-OEO have good antimicrobial activity and that functionalization of bare SBA-15 with APTES has no effect on antimicrobial activity (P > 0.05) compared to SBA-OEO. Moreover, it appears that direct surface coating of the modified SBA to a surface substrate may not provide a significant quantity of oil needed to elicit an antimicrobial response. Nevertheless, given the strong absorption properties of SBA materials, good antimicrobial activity, and the GRAS nature of SBA-OEO and SBA-APTES-OEO, the results found in this study open potential applications of the functionalized carrier materials.

2.
Sensors (Basel) ; 21(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206251

RESUMO

Vacuum packaging (VP) is used to reduce exposure of retail meat samples to ambient oxygen (O2) and preserve their quality. A simple sensor system produced from commercial components is described, which allows for non-destructive monitoring of the O2 concentration in VP raw meat samples. Disposable O2 sensor inserts were produced by spotting small aliquots of the cocktail of the Pt-benzoporphyrin dye and polystyrene in ethyl acetate onto pieces of a PVDF membrane and allowing them to air-dry. These sensor dots were placed on top of the beef cuts and vacuum-packed. A handheld reader, FirestinGO2, was used to read nondestructively the sensor phase shift signals (dphi°) and relate them to the O2 levels in packs (kPa or %). The system was validated under industrial settings at a meat processing plant to monitor O2 in VP meat over nine weeks of shelf life storage. The dphi° readings from individual batch-calibrated sensors were converted into the O2 concentration by applying the following calibration equation: O2 (%) = 0.034 * dphi°2 - 3.413 * dphi° + 85.02. In the VP meat samples, the O2 levels were seen to range between 0.12% and 0.27%, with the sensor dphi signals ranging from 44.03° to 56.02°. The DIY sensor system demonstrated ease of use on-site, fast measurement time, high sample throughput, low cost and flexibility.


Assuntos
Embalagem de Alimentos , Carne , Animais , Bovinos , Microbiologia de Alimentos , Carne/análise , Oxigênio/análise , Vácuo
3.
Foods ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35010144

RESUMO

The objective of this study was to investigate the use of potassium chloride (KCl) and tapioca starch (TS) to reduce salt levels below 1.5% in sausages manufactured using previously high pressure (HP) processed pork (150 MPa). A 3 × 2 × 1 factorial design was used to formulate breakfast sausages with three salt levels (0.5%, 1.0%, and 1.5%), two ingredient levels (no added ingredient or added as a combination of KCl\TS), and one pressure level (150 MPa). Partial replacement of NaCl with KCl and addition of TS had beneficial effects on the water binding abilities of sausage batters by decreasing (p < 0.05) total expressible fluid (%) and increasing water holding capacity (%). Overall, results indicated that the use of KCl\TS imparted some beneficial effects to salt-reduced low fat breakfast sausages and has the potential to reduce salt levels in the breakfast sausages to 1.0% while still maintaining the organoleptic and functional properties traditionally associated with these meat products.

4.
Food Sci Technol Int ; 24(8): 688-698, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30044138

RESUMO

Antimicrobial coated films were produced by an innovative method that allowed surface modification of commercial low-density polyethylene films so that well-defined antimicrobial surfaces could be prepared. A Pluronic™ surfactant and a polystyrene-polyethylene oxide block copolymer were employed to develop modified materials. The Pluronic™ surfactant provided a more readily functionalised film surface, while block copolymer provided a reactive interface which was important in providing a route to silver nanoparticles that were well adhered to the surface. Antimicrobial films containing silver were manufactured using a spray coater and the amount of silver used for coating purposes varied by the concentration of the silver precursor (silver nitrate) or the number of silver coatings applied. Potential antimicrobial activity of manufactured silver-coated low-density polyethylene films was tested against Pseudomonas fluorescens, Staphylococcus aureus and microflora isolated from raw chicken. The microbiological and physicochemical quality of chicken breast fillets wrapped with silver-coated low-density polyethylene films followed by vacuum skin packaging was also assessed during storage. Antimicrobial activity of developed silver-coated low-density polyethylene films was dependent ( p < 0.05) upon the concentrations of silver precursor and the number of silver coatings used. Better antimicrobial activity against P. fluorescens, S. aureus and chicken microflora was observed when the concentration of silver precursor was 3% and the spray coating deposition of silver was repeated four times. Use of silver-coated low-density polyethylene films extended ( p < 0.05) shelf life of chicken breast fillets and enhanced ( p < 0.05) oxidative stability compared to control films. Results indicated that silver-coated low-density polyethylene films could potentially be used as antimicrobial packaging for food applications.


Assuntos
Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos , Carne , Nanopartículas Metálicas , Polietileno , Prata , Animais , Anti-Infecciosos , Galinhas/microbiologia , Armazenamento de Alimentos , Humanos , Pseudomonas fluorescens , Staphylococcus aureus
5.
Meat Sci ; 132: 163-178, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28499770

RESUMO

Fresh and processed muscle-based foods are highly perishable food products and packaging plays a crucial role in providing containment so that the full effect of preservation can be achieved through the provision of shelf-life extension. Conventional packaging materials and systems have served the industry well, however, greater demands are being placed upon industrial packaging formats owing to the movement of muscle-based products to increasingly distant markets, as well as increased customer demands for longer product shelf-life and storage capability. Consequently, conventional packaging materials and systems will have to evolve to meet these challenges. This review presents some of the new strategies that have been developed by employing novel nanotechnological concepts which have demonstrated some promise in significantly extending the shelf-life of muscle-based foods by providing commercially-applicable, antimicrobially-active, smart packaging solutions. The primary focus of this paper is applied to subject aspects, such as; material chemistries employed, forming methods utilised, interactions of the packaging functionalities including nanomaterials employed with polymer substrates and how such materials ultimately affect microbes. In order that such materials become industrially feasible, it is important that safe, stable and commercially-viable packaging materials are shown to be producible and effective in order to gain public acceptance, legislative approval and industrial adoption.


Assuntos
Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Nanopartículas/química , Anti-Infecciosos , Embalagem de Alimentos/instrumentação , Embalagem de Alimentos/normas , Carne/microbiologia , Músculos , Polímeros/química
6.
Food Microbiol ; 62: 196-201, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889148

RESUMO

Two antimicrobial coatings, namely Sodium octanoate and Auranta FV (a commercial antimicrobial composed of bioflavonoids, citric, malic, lactic, and caprylic acids) were used. These two antimicrobials were surface coated onto the inner polyethylene layer of cold plasma treated polyamide films using beef gelatin as a carrier and coating polymer. This packaging material was then used to vacuum pack beef sub-primal cuts and stored at 4 °C. A control was prepared using the non-coated commercial laminate and the same vacuum packaged sub-primal beef cuts. During storage, microbial and quality assessments were carried out. Sodium octanoate treated packages significantly (p < 0.05) reduced microbial counts for all bacteria tested with an increase of 7 and 14 days, respectively compared to control samples. No significant effect on pH was observed with any treatment. The results suggested that these food grade antimicrobials have the potential to be used in antimicrobial active packaging applications for beef products.


Assuntos
Anti-Infecciosos/química , Embalagem de Alimentos/métodos , Conservação de Alimentos , Plásticos , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Caprilatos/análise , Caprilatos/química , Bovinos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Armazenamento de Alimentos/métodos , Gelatina/análise , Gelatina/química , Gases em Plasma/química , Carne Vermelha/microbiologia , Vácuo
7.
J Colloid Interface Sci ; 461: 239-248, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26402783

RESUMO

Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging.


Assuntos
Antibacterianos/farmacologia , Embalagem de Alimentos/instrumentação , Nanopartículas Metálicas/química , Polietileno/farmacologia , Prata/farmacologia , Resinas Acrílicas/química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Polietileno/química , Polietilenoimina/química , Pseudomonas fluorescens/efeitos dos fármacos , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Propriedades de Superfície
8.
Meat Sci ; 96(3): 1266-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334049

RESUMO

This study investigated the effects of high pressure (HP) treatment of pork meat before manufacturing sausages with reduced salt levels and compared them to sausages manufactured with untreated meat (control sausages). A 2×5 factorial design was set up incorporating two pressure levels (0 or 150 MPa) and five salt levels (0.5, 1.0, 1.5, 2.0 and 2.5%). Most quality attributes were affected when salt levels were reduced below 1.5%. Fat loss (FL) was (P<0.05) affected by salt level; samples with <1.5% salt had the highest FL. HP treatment increased emulsion stability and reduced cook loss (CL) compared to control sausages. Increased CL was observed when salt was reduced below 2.0%. Salt reduction below 1.5% adversely affected colour, sensory and texture attributes. Independent of salt, HP treatment affected adversely juiciness and cohesiveness while adhesiveness was improved. Overall, there is potential to manufacture sausages maintaining organoleptic and functional properties traditionally associated with sausages using HP treated meat.


Assuntos
Manipulação de Alimentos , Produtos da Carne/análise , Fosfatos/análise , Sais/análise , Animais , Cor , Comportamento do Consumidor , Culinária , Emulsões/química , Qualidade dos Alimentos , Humanos , Concentração de Íons de Hidrogênio , Pressão , Suínos , Paladar , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...