Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 24(18): e202300318, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37428998

RESUMO

Attrition-enhanced chiral symmetry breaking in crystals, known as Viedma deracemization, is a promising method for converting racemic solid phases into enantiomerically pure ones under non-equilibrium conditions. However, many aspects of this process remain unclear. In this study, we present a new investigation into Viedma deracemization using a comprehensive kinetic rate equation continuous model based on classical primary nucleation theory, crystal growth, and Ostwald ripening. Our approach employs a fully microreversible kinetic scheme with a size-dependent solubility following the Gibbs-Thomson rule. To validate our model, we use data from a real NaClO3 deracemization experiment. After parametrization, the model shows spontaneous mirror symmetry breaking (SMSB) under grinding. Additionally, we identify a bifurcation scenario with a lower and upper limit of the grinding intensity that leads to deracemization, including a minimum deracemization time within this window. Furthermore, this model uncovers that SMSB is caused by multiple instances of concealed high-order autocatalysis. Our findings provide new insights into attrition-enhanced deracemization and its potential applications in chiral molecule synthesis and understanding biological homochirality.

2.
Front Genet ; 12: 672780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567060

RESUMO

Information in living systems is part of a complex relationship between the internal organization and functionality of life. In a cell, both genetic-coding sequences and molecular-shape recognition are sources of biological information. For folded polymers, its spatial arrangement contains general references about conditions that shaped them, as imprints, defining the data for spatial (conformational) information. Considering the origin of life problem, prebiotic dynamics of matching and transfer of molecular shapes may emerge as a flow of information in prebiotic assemblages. The property of carrying information in molecular conformations is only displayed at this system organization level. Accordingly, spatial information is a resource for active system responses toward milieu disturbances. Propagation of resilient conformations could be the substrate for structural maintenance through dynamical molecular scaffolding. The above is a basis for adaptive behavior in potentially biogenic systems. Starting from non-structured populations of carrying-information polymers, in the present contribution, we advance toward an entire theoretical framework considering the active role of these polymers to support the emergence of adaptive response in systems that manage conformational information flow. We discuss this scenario as a previous step for the arising of sequential information carried out by genetic polymers.

3.
J Theor Biol ; 499: 110316, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32387366

RESUMO

One of the most striking features of a living system is the self-sustaining functional inner organization, which is only possible when a source of internal references is available from which the system is able to self-organize components and processes. Internal references are intrinsically related to biological information, which is typically understood as genetic information. However, the organization in living systems supports a diversity of intricate processes that enable life to endure, adapt and reproduce because of this organization. In a biological context, information refers to a complex relationship between internal architecture and system functionality. Nongenetic processes, such as conformational recognition, are not considered biological information, although they exert important control over cell processes. In this contribution, we discuss the informational nature in the recognition of molecular shape in living systems. Thus, we highlight supramolecular matching as having a theoretical key role in the origin of life. Based on recent data, we demonstrate that the transfer of molecular conformation is a very likely dynamic of prebiotic information, which is closely related to the origin of biological homochirality and biogenic systems. In light of the current hypothesis, we also revisit the central dogma of molecular biology to assess the consistency of the proposal presented here. We conclude that both spatial (molecular shape) and sequential (genetic) information must be represented in this biological paradigm.


Assuntos
Origem da Vida , Estrutura Molecular
4.
PLoS One ; 14(7): e0218750, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31260466

RESUMO

This study presents multiwall and bamboo-like carbon nanotubes found in samples from the Allende carbonaceous chondrite using high-resolution transmission electron microscopy (HRTEM). A highly disordered lattice observed in this material suggests the presence of chiral domains in it. Our results also show amorphous and poorly-graphitized carbon, nanodiamonds, and onion-like fullerenes. The presence of multiwall and bamboo-like carbon nanotubes have important implications for hypotheses that explain how a probable source of asymmetry in carbonaceous chondrites might have contributed to the enantiomeric excess in soluble organics under extraterrestrial scenarios. This is the first study proving the existence of carbon nanotubes in carbonaceous chondrites.


Assuntos
Meio Ambiente Extraterreno , Meteoroides , Nanodiamantes/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Planeta Terra , Fulerenos/química , México , Microscopia Eletrônica de Transmissão , Nanodiamantes/química , Nanotubos de Carbono/química
5.
Photochem Photobiol ; 85(1): 78-87, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18643905

RESUMO

Based on previous work in which we proposed midgut as a putative peripheral oscillator responsible for circadian reduced glutathione (GSH) crayfish status, herein we investigated the retina and optic lobe-brain (OL-B) circadian GSH system and its ability to deal with reactive oxygen species (ROS) produced as a consequence of metabolic rhythms and light variations. We characterized daily and antioxidant circadian variations of the different parameters of the glutathione system, including GSH, oxidized glutathione (GSSG), glutathione reductase (GR) and glutathione peroxidase (GPx), as well as metabolic and lipoperoxidative circadian oscillations in retina and OL-B, determining internal and external GSH-system synchrony. The results demonstrate statistically significant bi- and unimodal daily and circadian rhythms in all GSH-cycle parameters, substrates and enzymes in OL-B and retina, as well as an apparent direct effect of light on these rhythms, especially in the retina. The luminous condition appears to stimulate the GSH system to antagonize ROS and lipid peroxidation (LPO) daily and circadian rhythms occurring in both structures, oscillating with higher LPO under dark conditions. We suggest that the difference in the effect of light on GSH rhythmic mechanisms of both structures for antagonizing ROS could be due to differences in glutathione-system coupling strength with the circadian clock.


Assuntos
Antioxidantes/metabolismo , Astacoidea/metabolismo , Ritmo Circadiano , Neurônios/metabolismo , Luz Solar , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...