Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(41): 22659-22670, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812759

RESUMO

Lipid nanoparticles (LNPs) are becoming widely adopted as vectors for the delivery of therapeutic payloads but generally lack intrinsic tissue-homing properties. These extracellular vesicle (EV) mimetics can be targeted toward the liver, lung, or spleen via charge modification of their lipid headgroups. Homing to other tissues has only been achieved via covalent surface modification strategies using small-molecule ligands, peptides, or monoclonal antibodies─methods that are challenging to couple with large-scale manufacturing. Herein, we design a novel modular artificial membrane-binding protein (AMBP) platform for the modification of LNPs postformation. The system is composed of two protein modules that can be readily coupled using bioorthogonal chemistry to yield the AMBP. The first is a membrane anchor module comprising a supercharged green fluorescent protein (scGFP) electrostatically conjugated to a dynamic polymer surfactant corona. The second is a functional module containing a cardiac tissue fibronectin homing sequence from the bacterial adhesin CshA. We demonstrate that LNPs modified using the AMBP exhibit a 20-fold increase in uptake by fibronectin-rich C2C12 cells under static conditions and a 10-fold increase under physiologically relevant shear stresses, with no loss of cell viability. Moreover, we show targeted localization of the AMBP-modified LNPs in zebrafish hearts, highlighting their therapeutic potential as a vector for the treatment of cardiac disease and, more generally, as a smart vector.


Assuntos
Fibronectinas , Nanopartículas , Animais , Peixe-Zebra , Lipossomos , Nanopartículas/química , RNA Interferente Pequeno/química
2.
Chembiochem ; 23(12): e202200115, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35420232

RESUMO

Protein therapeutics offer exquisite selectivity in targeting cellular processes and behaviors, but are rarely used against non-cell surface targets due to their poor cellular uptake. While cell-penetrating peptides can be used to deliver recombinant proteins to the cytosol, it is generally difficult to selectively deliver active proteins to target cells. Here, we report a recombinantly produced, intracellular protein delivery and targeting platform that uses a photocaged intein to regulate the spatio-temporal activation of protein activity in selected cells upon irradiation with light. The platform was successfully demonstrated for two cytotoxic proteins to selectively kill cancer cells after photoactivation of intein splicing. This platform can generically be applied to any protein whose activity can be disrupted by a fused intein, allowing it to underpin a wide variety of future protein therapeutics.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Inteínas , Processamento de Proteína , Proteínas Recombinantes
3.
Stem Cells Transl Med ; 10(6): 855-866, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660953

RESUMO

Myocardial infarction (MI) has been the primary cause of death in developed countries, resulting in a major psychological and financial burden for society. Current treatments for acute MI are directed toward rapid restoration of perfusion to limit damage to the myocardium, rather than promoting tissue regeneration and subsequent contractile function recovery. Regenerative cell therapies (CTs), in particular those using multipotent stem cells (SCs), are in the spotlight for treatment post-MI. Unfortunately, the efficacy of CTs is somewhat limited by their poor long-term viability, homing, and engraftment to the myocardium. In response, a range of novel SC-based technologies are in development to provide additional cellular modalities, bringing CTs a step closer to the clinic. In this review, the current landscape of emerging CTs and their augmentation strategies for the treatment post-MI are discussed. In doing so, we highlight recent advances in cell membrane reengineering via genetic modifications, recombinant protein immobilization, and the utilization of soft biomimetic scaffold interfaces.


Assuntos
Infarto do Miocárdio , Miocárdio , Transplante de Células-Tronco , Humanos , Células-Tronco Multipotentes/citologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/citologia , Regeneração , Transplante de Células-Tronco/métodos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...