Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 294(1-2): 243-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17124637

RESUMO

Nicotinic acid (niacin) has been used clinically to manage dyslipidemia for many years. The molecular target of nicotinic acid was unknown until the recent revelation of human G-coupled receptor HM74a as the high affinity receptor for nicotinic acid. In searching for a cell line expressing endogenous human HM74a receptor, we have identified that the A431 cell line, a human epidermoid cell line, expresses a high level of HM74a receptor. An HM74a-specific real time PCR probe set was designed and the mRNA levels of HM74a in A431 and 32 other cultured cell lines were measured quantitatively. When the mRNA expression of HM74a in A431 cells was compared to that in human primary preadipocytes, adipocytes and adipose tissue, we found that the level in A431 was about 10- fold higher than that in adipocytes and adipose tissue. The ratio of HM74a:HM74 mRNA was measured quantitatively and it was determined to be 3:2 in A431 cells. The function of the HM74a receptor in A431 cells was evaluated for its ability to inhibit forskolin-induced cAMP production. Pertussis toxin treatment abolished the inhibition. Our data suggest that the A431 cell line may serve as a cellular model for further investigation of niacin/HM74a-mediated signal transduction in modulating metabolism. A431 cell line may also provide a valuable cell model to study prostaglandin production upon HM74a activation to improve our understanding of niacin/HM74a-mediated skin flushing.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , AMP Cíclico/análise , Expressão Gênica , Humanos , Dados de Sequência Molecular , RNA Mensageiro/análise , Receptores Acoplados a Proteínas G/química , Receptores Nicotínicos/química
2.
Biochem Biophys Res Commun ; 345(1): 29-37, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16674924

RESUMO

HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.


Assuntos
Ácido Araquidônico/metabolismo , Carcinoma de Células Escamosas/metabolismo , Niacina/administração & dosagem , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos
3.
J Cell Biochem ; 90(2): 339-46, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14505350

RESUMO

We have quantitatively measured gene expression for the sodium-dependent glucose cotransporters 1 and 2 (SGLT1 and SGLT2) in 23 human tissues using the method of real time PCR. As predicted, our results revealed that the expression of SGLT1 was very high in the small intestine (1.2E + 6 molecules/microg total RNA) relative to that in the kidney (3E + 4 molecules/microg total RNA). Surprisingly, we observed that the expression of SGLT1 in human heart was unexpectedly high (3.4E + 5 molecules/microg total RNA), approximately 10-fold higher than that observed in kidney tissue. DNA sequencing confirmed that the PCR amplified fragment was indeed the human SGLT1 gene. Moreover, in situ hybridization studies using a digoxigenin (DIG)-labeled antisense cRNA probe corresponding to human SGLT1 cDNA confirm that human cardiomyocytes express SGLT1 mRNA. In contrast, the expression of SGLT2 in human tissues appears to be ubiquitous, with levels ranging from 6.7E + 4 molecules/microg total RNA (in skeletal muscle) to 3.2E + 6 molecules/microg total RNA (in kidney), levels 10-100-fold higher than the expression of SGLT1 in the same tissues. Our finding that human cardiomyocytes express high levels of SGLT1 RNA suggests that SGLT1 may have a functional role in cardiac glucose transport. Since several SGLT inhibitors are currently in development as potential anti-diabetic agents, it may be important to assess the functional consequences of inhibition of SGLT1 in the heart.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Miócitos Cardíacos/metabolismo , Humanos , Hibridização In Situ , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Monossacarídeos/genética , Sondas RNA , RNA Complementar/genética , RNA Complementar/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportador 1 de Glucose-Sódio , Transportador 2 de Glucose-Sódio , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...