Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(21): 30555-30568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607480

RESUMO

The root dielectric response was measured on a minute scale to assess its efficiency for monitoring short-term cadmium (Cd) toxicity non-destructively. Electrical capacitance (CR), dissipation factor (DR) and electrical conductance (GR) were detected during the 24 to 168 h after Cd treatment (0, 20, 50 mg Cd2+ kg-1 substrate) in potted maize, cucumber and pea. Stress was also evaluated by measuring leaf chlorophyll content, Fv/Fm and stomatal conductance (gs) in situ, and shoot and root mass and total root length after harvest. CR showed a clear diurnal pattern, reflecting the water uptake rate, and decreased significantly in response to excessive Cd due to impeded root growth, the reduced tissue permittivity caused by accelerated lignification, and root ageing. Cd exposure markedly increased DR, indicating greater conductive energy loss due to oxidative membrane damage and enhanced electrolyte leakage. GR, which was coupled with root hydraulic conductance and varied diurnally, was increased transiently by Cd toxicity due to enhanced membrane permeability, but declined thereafter owing to stress-induced leaf senescence and transpiration loss. The time series of impedance components indicated the comparatively high Cd tolerance of the applied maize and the sensitivity of pea cultivar, which was confirmed by visible shoot symptoms, repeated physiological investigations and biomass measurements. The results demonstrated the potential of single-frequency dielectric measurements to follow certain aspects of the stress response of different species on a fine timescale without plant injury. The approach can be combined with widely used plant physiological methods and could contribute to breeding crop genotypes with improved stress tolerance.


Assuntos
Cádmio , Raízes de Plantas , Cádmio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Folhas de Planta , Poluentes do Solo/toxicidade
2.
Plant Methods ; 20(1): 5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195647

RESUMO

BACKGROUND: The measurement of root dielectric response is a useful non-destructive method to evaluate root growth and function. Previous studies tracked root development throughout the plant growing cycle by single-time electrical measurements taken repeatedly. However, it is known that root conductivity and uptake activity can change rapidly, coupled with the day/night cycles of photosynthetic and transpiration rate. Therefore, the low-frequency dielectric monitoring of intact root-substrate systems at minute-scale temporal resolution was tested using a customized impedance measurement system in a laboratory environment. Electrical capacitance (CR) and conductance (GR) and the dissipation factor (DR) were detected for 144 h in potted maize, cucumber and pea grown under various light/dark and temperature conditions, or subjected to progressive leaf excision or decapitation. Photosynthetic parameters and stomatal conductance were also measured to evaluate the stress response. RESULTS: The CR and GR data series showed significant 24-h seasonality associated with the light/dark and temperature cycles applied. This was attributed to the diurnal patterns in whole-plant transpiration (detected via stomatal conductance), which is strongly linked to the root water uptake rate. CR and GR decreased during the 6-day dark treatment, and dropped proportionally with increasing defoliation levels, likely due to the loss of canopy transpiration caused by dark-induced senescence or removal of leaves. DR showed a decreasing trend for plants exposed to 6-day darkness, whereas it was increased markedly by decapitation, indicating altered root membrane structure and permeability, and a modified ratio of apoplastic to cell-to-cell water and current pathways. CONCLUSIONS: Dynamic, in situ impedance measurement of the intact root system was an efficient way of following integrated root water uptake, including diurnal cycles, and stress-induced changes. It was also demonstrated that the dielectric response mainly originated from root tissue polarization and current conduction, and was influenced by the actual physiological activity of the root system. Dielectric measurement on fine timescale, as a diagnostic tool for monitoring root physiological status and environmental response, deserves future attention.

3.
PLoS One ; 18(9): e0292125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768988

RESUMO

This study aimed to survey the long-term effects of fertilization practices on the functional diversity of the soil microbiota. A 60-year fertilization experiment with mineral fertilizers, farmyard manure and combined treatments was sampled in two consecutive years in maize (Zea mays L.) and wheat (Triticum aestivum L.). Soil chemical properties, plant growth and physiological parameters were measured. The MicroRespTM method was applied to assess the community level physiological profiles (CLPPs) of the rhizosphere soil, and the arbuscular mycorrhizal fungal (AMF) colonization of the roots was determined. Samples were taken in the early vegetative stages, at flowering, and at harvest in both years. The measured parameters were analysed using multifactorial ANOVA to determine treatment effects, crop-dependent differences, and seasonality. PCA analysis was performed on the data matrix to reveal more complex correspondences, and Pearson's product-moment correlation was used to confirm relationships between some of the measured soil and plant parameters. Fertilization treatments caused long-term changes in some biological parameters such as: MicroRespTM parameters, citrate utilization, total substrate-induced respiration value, and the ratio of utilization of amino acids and sugars. The rate of AMF colonization responded mainly to the plant nutrition status and the plant requirements, suggesting a plant-mediated effect in the case of mycorrhiza. Mineral nitrogen fertilization and soil acidification were found to be the main factors affecting the catabolic activity of soil microbiota, while AMF colonization responded to the balance of plant nutrition.

4.
Plants (Basel) ; 11(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365428

RESUMO

As root electrical capacitance (CR*) was assumed to depend on the stem properties, the efficiency of measuring CR* at flowering for whole-plant phenotyping was assessed in five wheat cultivars in three replicate plots over two years. Linear regression analysis was used to correlate CR* with plant-size parameters and flag-leaf traits (extension and SPAD chlorophyll content) at flowering, and with yield components at maturity. The plot-mean CR* was correlated with the plot leaf area index (LAI), the chlorophyll quantity (LAI×SPAD), and the grain yield across years. At plant scale, CR* was found to show the strongest positive regression with total chlorophyll in the flag leaf (flag leaf area × SPAD; R2: 0.65−0.74) and with grain mass (R2: 0.55−0.70) for each cultivar and year (p < 0.001). Likewise, at plot scale, the regression was strongest between CR* and the LAI×SPAD value (R2: 0.86−0.99; p < 0.01) for the cultivars. Consequently, CR* indicated the total plant nutrient and photosynthate supply at flowering, which depended on root uptake capacity, and strongly influenced the final yield. Our results suggested that the polarization of the active root membrane surfaces was the main contributor to CR*, and that the measurement could be suitable for evaluating root size and functional intensity. In conclusion, the capacitance method can be applied for nondestructive whole-plant phenotyping, with potential to estimate root and shoot traits linked to the nutrient supply, and to predict grain yield. CR* can be incorporated into allometric models of cereal development, contributing to optimal crop management and genetic improvement.

5.
Plants (Basel) ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685800

RESUMO

This study evaluated the concurrent application and the results of the root electrical capacitance (CR) and minirhizotron (MR) methods in the same plant populations. The container experiment involved three winter wheat cultivars, grown as sole crops or intercropped with winter pea under well-watered or drought-stressed conditions. The wheat root activity (characterized by CR) and the MR-based root length (RL) and root surface area (RSA) were monitored during the vegetation period, the flag leaf chlorophyll content was measured at flowering, and the wheat shoot dry mass (SDM) and grain yield (GY) were determined at maturity. CR, RL and RSA exhibited similar seasonal patterns with peaks around the flowering. The presence of pea reduced the maximum CR, RL and RSA. Drought significantly decreased CR, but increased the MR-based root size. Both intercropping and drought reduced wheat chlorophyll content, SDM and GY. The relative decrease caused by pea or drought in the maximum CR was proportional to the rate of change in SDM or GY. Significant linear correlations (R2: 0.77-0.97) were found between CR and RSA, with significantly smaller specific root capacitance (per unit RSA) for the drought-stress treatments. CR measurements tend to predict root function and the accompanying effect on above-ground production and grain yield. The parallel application of the two in situ methods improves the evaluation of root dynamics and plant responses.

6.
Front Plant Sci ; 9: 1631, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483288

RESUMO

Soybean (Glycine max L. Merr.) is regarded worldwide as indisputably one of the most important crops for human food and animal feed. The presence of symbiotic bacteria and fungi is essential for soybean breeding, especially in low-input agricultural systems. Research on the cooperation between different microbial symbionts is a key to understanding how the health and productivity of the plant is supported. The symbiotic effectivity of dual and tripartite symbiotic agents was investigated in two pot experiments on different soybean cultivars with special regard to compatibility. In the Selection experiment, two out of sixteen soybean cultivars (Aliz, Emese) were chosen on the basis of their drought tolerance and used in all the other investigations. In the Compatibility experiment, the compatible coupling of symbiotic partners was selected based on the efficiency of single and co-inoculation with two Bradyrhizobium japonicum strains and two commercial arbuscular mycorrhizal fungal (AMF) products. Significant differences were found in the infectivity and effectivity of the microsymbionts. The rhizobial and AMF inoculation generally improved plant production, photosynthetic efficiency and root activity, but this effect depended on the type of symbiotic assotiation. Despite the low infectivity of AMF, inocula containing fungi were more beneficial than those containing only rhizobia. In the Drought Stress (DS) experiment, co-inoculated and control plants were grown in chernozem soil originating from organic farms. Emese was more resistant to drought stress than Aliz and produced a bigger root system. Under DS, the growth parameters of both microbially inoculated cultivars were better than that of control, proving that even drought tolerant genotypes can strengthen their endurance due to inoculation with AMF and nitrogen fixing bacteria. Root electrical capacitance (CR) showed a highly significant linear correlation with root and shoot dry mass and leaf area. The same root biomass was associated with higher CR in inoculated hosts. As CR method detects the absorptive surface increasing due to inoculation, it may be used to check the efficiency of the microbial treatment.

7.
Front Plant Sci ; 9: 93, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449861

RESUMO

The root electrical capacitance (C R ) method is suitable for assessing root growth and activity, but soil water content (SWC) strongly influences the measurement results. This study aimed to adapt the method for field monitoring by evaluating the effect of SWC on root capacitance to ensure the comparability of C R detected at different SWC. First a pot experiment was conducted with maize and soybean to establish C R -SWC functions for the field soil. Ontogenetic changes in root activity were monitored under field conditions by simultaneously measuring C R and SWC around the roots. The C R values were normalized using SWC data and experimental C R -SWC functions to obtain C R*, the comparable indicator of root activity. The effect of arbuscular mycorrhizal fungi (AMF) inoculation on the C R* and biomass of field-grown soybean was investigated. The pot trial showed an exponential increase in C R with SWC. C R -SWC functions proved to be species-specific. C R showed strong correlation with root dry mass (R2 = 0.83-0.87). The root activity (C R*) of field-grown crops increased until flowering, then decreased during maturity. This was consistent with data obtained with other methods. AMF inoculation of soybean resulted in significantly higher C R* during the late vegetative and early flowering stages, when destructive sampling concurrently showed higher shoot biomass. The results demonstrated that the root capacitance method could be useful for time course studies on root activity under field conditions, and for comparing single-time capacitance data collected in areas with heterogeneous soil water status.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...