Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36840203

RESUMO

Invasive tree species are a significant threat to native flora. They modify the environment with their allelopathic substances and inhibit the growth of native species by shading, thus reducing diversity. The most effective way to control invasive plants is to prevent their spread which requires identifying the environmental parameters promoting it. Since there are several types of invasive plant databases available, determining which database type is the most relevant for investigating the occurrence of alien plants is of great importance. In this study, we compared the efficiency and reliability of point-based (EUROSTAT Land Use and Coverage Area Frame Survey (LUCAS)) and polygon-based (National Forestry Database (NFD)) databases using geostatistical methods in ArcGIS software. We also investigated the occurrence of three invasive tree species (Ailanthus altissima, Elaeagnus angustifolia, and Robinia pseudoacacia) and their relationships with soil, hydrological, and climatic parameters such as soil organic matter content, pH, calcium carbonate content, rooting depth, water-holding capacity, distance from the nearest surface water, groundwater depth, mean annual temperature, and mean annual precipitation with generalized linear models in R-studio software. Our results show that the invasion levels of the tree species under study are generally over-represented in the LUCAS point-based vegetation maps, and the point-based database requires a dataset with a larger number of samples to be reliable. Regarding the polygon-based database, we found that the occurrence of the invasive species is generally related to the investigated soil and hydrological and climatic factors.

2.
Sci Total Environ ; 856(Pt 1): 158960, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167140

RESUMO

The most widespread nature-based solution for mitigating climate change is tree planting. When realized as forest restoration in historically forested biomes, it can efficiently contribute to the sequestration of atmospheric carbon and can also entail significant biodiversity and ecosystem service benefits. Conversely, tree planting in naturally open biomes can have adverse effects, of which water shortage due to increased evapotranspiration is among the most alarming ones. Here we assessed how soil texture affects the strength of the trade-off between tree cover and water balance in the forest-steppe biome, where the global pressure for afforestation is threatening with increasing tree cover above historical levels. Here we monitored vertical soil moisture dynamics in four stands in each of the most common forest types of lowland Hungary on well-drained, sandy (natural poplar groves, and Robinia and pine plantations) and on poorly drained, silty-clayey soils (natural oak stands and Robinia plantations), and neighboring grasslands. We found that forests on sand retain moisture in the topsoil (approx. 20 cm) throughout the year, but a thick dry layer develops below that during the vegetation period, significantly impeding groundwater recharge. Neighboring sandy grasslands showed an opposite pattern, with often dry topsoil but intact moisture reserves below, allowing deep percolation. In contrast, forests on silty-clayey soils did not desiccate lower soil layers compared neighboring grasslands, which in turn showed moisture patterns similar to sandy grasslands. We conclude that, in water-limited temperate biomes where landscape-wide water regime depends on deep percolation, soil texture should drive the spatial allocation of tree-based climate mitigation efforts. On sand, the establishment of new forests should be kept to a minimum and grassland restoration should be preferred. The trade-off between water and carbon is less pronounced on silty-clayey soils, making forest patches and wooded rangelands viable targets for both climate mitigation and ecosystem restoration.


Assuntos
Carbono , Ecossistema , Água , Areia , Florestas , Solo
3.
Plants (Basel) ; 10(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34961140

RESUMO

Invasive species are a major threat to biodiversity worldwide. Controlling their rapid spread can only be effective if we consider the geographical factors that influence their occurrence. For instance, roads, railway networks, green and blue infrastructure, and elements of ecological networks (e.g., ecological corridors) can facilitate the spread of invasive species. In our study, we mapped the occurrence of five invasive plant taxa (tree of heaven, common milkweed, Russian olive, black locust, and goldenrods) in Hungary, using field photos from the EUROSTAT Land Use and Coverage Area Frame Survey (LUCAS) database from the year 2015. Species point occurrence data were compared with the spatial characteristics of linear transport infrastructure and with the green and blue infrastructure. We found that the occurrence of tree of heaven and Russian olive was strongly related to the road and railway network. The average Euclidean distance of LUCAS points infected with these species from railway embankments and roads was much smaller than that of uninfected points. However, black locust and goldenrods were more common only along the road network. According to our results, the occurrence of some investigated invasive plants was over-represented in the HEN and within Natura 2000 areas of Hungary compared to non-infected points. Our results may provide important information for predicting the rate of invasion and for applying targeted management within the HEN, and Natura 2000 protected areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...