Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858991

RESUMO

The main objective of this research was to examine the effects of exogenous salicylic acid (SA) and to study the seasonal variation of the chlorophyll a fluorescence parameters and antioxidant enzymatic activities in desiccation-tolerant moss species Syntrichia ruralis (Hedw.) Web. and Mohr. Aqueous 0.001 M SA solution was sprayed on the moss cushions collected from semi-arid sandy grassland, Hungary in three seasons (spring, summer, autumn). These cushions were kept under the observation for 10 Days. Chlorophyll a fluorescence parameters, i.e., maximum photochemical quantum yield of PS II (Fv/Fm), effective photochemical quantum yield of PS II (ΦPSII), non-photochemical quenching (NPQ), and antioxidant enzymatic activities, i.e., ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (POD), and protein content were determined. The results showed the increase of Fv/Fm in spring and autumn season while ΦPSII was reduced significantly during spring and summer season after treatment with SA compared to control. SA-treated mosses showed higher values of non-photochemical quenching (NPQ) during the spring and autumn season than in summer. Activities of enzyme APX and CAT were found to increase in SA-treated except POD activity. In SA-treated moss cushions, lower protein content was found. It can be concluded that seasonal variation has been observed in chlorophyll fluorescence and antioxidant system after long term of desiccation in S. ruralis species that could be because of SA and might be due to fluctuations in conditions of their habitat, duration of light intensity, temperature and precipitation.

2.
Plants (Basel) ; 9(1)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940766

RESUMO

Bryophytes face challenges due to global climate change which is leading to in-depth research in monitoring and studying their photosynthetic activity. The aim of this preliminary experiment was to study the seasonal variation trend in the chlorophyll a fluorescence parameters, Fv/Fm (ratio of variable to maximum fluorescence), photochemical fluorescence quenching (qP), photochemical quantum yield of photosystem II (ΦPS II), fluorescence quenching (qN), and non-photochemical quenching (NPQ), in the moss cushions of Syntrichia ruralis [Hedw.] collected from semi-arid sandy dunes for two slopes i.e., north-east (NE) and south-west (SW) direction. Our results showed a seasonal and small-spatial scale variation trend in all chlorophyll fluorescence parameters. These variations are due to different seasonal conditions referring to different degrees of environmental stress. ΦPS II and qP values were maximum in winter and in spring seasons while Fv/Fm, NPQ and qN were maximum in summer. Based on the different exposition of dunes, the SW slope showed increased values of the effective quantum yield of PS II and qP in comparison to the NE slope due to the optimal microclimate conditions for their expansion. These results may refer to the future changing in diversification and coverage of the Syntrichia species in semi-arid sandy grassland due to more effective metabolism in the beneficial microclimatic conditions.

3.
Plant Physiol Biochem ; 132: 297-307, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30245343

RESUMO

Arbuscular mycorrhizal (AM) symbiosis can alleviate drought and temperature stresses in plants, but it is unknown whether the benefits can be maintained when the plants are exposed to combined drought and heat stress. In this study, the impacts of AM fungi, Septoglomus deserticola and Septoglomus constrictum on tomato plant tolerance to combined drought and heat stress were investigated. No substantial differences in physiological parameters were found in all plants under non-stress conditions, except a higher expression of SlLOXD and SlPIP2.7 in plants + S. constrictum. Under drought, heat and drought + heat stress, both fungal symbionts could moderate oxidative stress by decreasing the lipid peroxidation, hydrogen peroxide level and improving leaf and root antioxidant enzyme activities, however better performance in plants + S. constrictum. Under drought and the combined stress, inoculation with S. constrictum enhanced stomatal conductance, leaf water potential and relative water content, elevated Fv/Fm and biomass production of the hosts as compared to non-inoculated plants whilst these improvements in plants + S. deserticola were not obvious. Under the combined stress inoculation of S. constrictum did not change the expression of SlNCED and SlPIP2.7 in roots as under heat stress. Expression of SlLOXD in root were upregulated in plants + S. contrictum under drought + heat stress as in mycorrhizal roots under drought stress. Altogether, our results indicated that AM inoculation, particularly with S. constrictum had a positive influence on the tomato plant tolerance to drought + heat stress. Further studies are essential to add some light on molecular mechanisms of mycorrhizal plant tolerance to this combined stress.


Assuntos
Secas , Resposta ao Choque Térmico/fisiologia , Micorrizas/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Antioxidantes/metabolismo , Biomassa , Vias Biossintéticas/genética , Clorofila/metabolismo , Fluorescência , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Solanum lycopersicum/genética , Malondialdeído/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/enzimologia , Brotos de Planta/microbiologia , Estômatos de Plantas/fisiologia , Simbiose
4.
J Plant Physiol ; 165(14): 1438-54, 2008 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-18346813

RESUMO

The winter photosynthetic activity (quantified by net CO(2) assimilation rates and chlorophyll (Chl) a fluorescence parameters) of 20 plant species (including two lichens and two mosses) of a Hungarian temperate semi-desert sand grassland was determined on one occasion per year in 1984, 1989 and 1994. Throughout winter, the overwintering green shoots, leaves or thalli were regularly exposed to below zero temperatures at night and daytime temperatures of 0-5 degrees C. In situ tissue temperature varied between -2.1 and +6.9 degrees C and the photosynthetic photon flux density (PPFD) between 137 and 351 micromol m(-2)s(-1). Under these conditions 18 of the grassland species exhibited photosynthetic CO(2) uptake (range: vascular plants ca. 0.2-3.8 micromol m(-2)s(-1), cryptogams 0.3-2.79 micromol kg(-1)s(-1)) and values of 0.9-5.1 of the Chl fluorescence decrease ratio R(Fd). In 1984, Festuca vaginata and Sedum sexangulare had net CO(2) assimilation at leaf temperatures of -0.85 to -1.2 degrees C. In 1989, all species except Cladonia furcata showed net CO(2) assimilation at tissue temperatures of 0 to +3.3 degrees C, with the highest rates observed in Poa bulbosa and F. vaginata. The latter showed a net CO(2) assimilation saturation at a PPFD of 600 micromol m(-2)s(-1) and a temperature optimum between +5 and +18 degrees C. At the 1994 measurements, the photosynthetic rates were higher at higher tissue water contents. The two mosses and lichens had a net photosynthesis (range: 1.1-2.79 micromol CO(2)kg(-1)s(-1)) at 2 degrees C tissue temperature and at 4-5 degrees C air temperature. Ca. 80% of the vascular grassland plant species maintained a positive C-balance during the coldest periods of winter, with photosynthetic rates of 1.5-3.8 micromol CO(2)m(-2)s(-1). In an extremely warm beginning March of the relatively warm winter of 2006/2007, the dicotyledonous plants had much higher CO(2) assimilation rates on a Chl (range 6-14.9 micromol g(-1)Chl s(-1)) and on a dry weight basis (9-48 micromol kg(-1)dw s(-1)) than in the cold winter of 1994. However, the assimilation rates of the three investigated cryptogams (Tortula and two Cladonia) and the two grasses Festuca and Poa were not affected by this increase. The results indicate that the photosynthetic activity of temperate semi-desert sand grassland species can help somewhat in slowing the general CO(2) rise in winter and function as a potential carbon sink of the investigated semi-desert Hungarian grassland species.


Assuntos
Clima Desértico , Ecossistema , Fotossíntese , Poaceae/fisiologia , Estações do Ano , Ar , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fluorescência , Fótons , Folhas de Planta/metabolismo , Temperatura
5.
Environ Monit Assess ; 134(1-3): 279-85, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17492362

RESUMO

Moss transplants of Tortula ruralis were used as active biomonitoring organisms as part of a monitoring study to assess the metals (Al, Cd, Cu, Cr, Fe, Ni, Pb, V and Zn) associated with ambient particles on mosses in Budapest, the capital town of Hungary. The moss samples were collected in a nature conservation area from a semi-arid sand grassland (Festucetum vaginatae danubiale), less than 1 month before transplantation. Moss cushions were exposed to pollution in Budapest during October-November 1993 and February-March 1994. In the study area, 16 sites were marked out as measuring sites, in accordance with the structure of the city. A similar stand was established in the Botanical Gardens of the Szent István University in Gödöllo as a control site. ICP-AES analysis of moss for metals showed the ability of Tortula ruralis to accumulate the metals under study. Control site showed lower impact in comparison to the other sites.


Assuntos
Poluentes Atmosféricos/metabolismo , Bryopsida/metabolismo , Metais/metabolismo , Monitoramento Ambiental , Hungria
6.
Z Naturforsch C J Biosci ; 61(9-10): 699-703, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17137116

RESUMO

Stress response capacity (Fv/Fm at 690 nm and F690/F735 at Fmax) of untransformed hybrid poplar, Populus x canescens (P tremula x P alba), and two transgenic lines overexpressing gamma-ECS (gamma-glutamylcysteine synthetase) either in the cytosol (cyt-ECS) or in the chloroplast (chl-ECS) was studied in response to the herbicide paraquat (4.0 x 10(-9) to 4.0 x 10(-6) M) for 21 days. Significant differences at sublethal (4.0 x 10(-7) M) and bleaching (4.0 x 10(-6) M) concentrations of paraquat were observed with about a two-fold and eight-fold decrease in the photosynthetic activity (Fv/Fm at 690 nm and F690/F735 at Fmax), respectively. None of the gshI transgenic lines (cyt-ECS, chl-ECS) with elevated GSH content exhibited significant tolerance to paraquat. Semiquantitative RT-PCR of the cyt-ECS clone was used for gene expression analysis of the nuclear encoded rbcS gene and the stress responsive gst gene. Expression of the constitutively expressed 26SrRNA ribosomal gene was probed as a control for all RT-PCR reactions. The relative intensities of gene expressions normalized to the level of 26SrRNA intensity showed a 50% decrease in the nuclear encoded rbcS expression and a 120% increase in the stress responsive gst gene expression of the paraquat treated (4.0 x 10(-7) M) samples of the transgenic poplar line (cyt-ECS).


Assuntos
Oxazinas/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Animais , Afídeos/patogenicidade , Benzoxazinas , Cromatografia Líquida de Alta Pressão , Genótipo , Secale/metabolismo , Sementes/metabolismo , Triticum/parasitologia , Zea mays/metabolismo
7.
Int J Phytoremediation ; 5(1): 13-23, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12710232

RESUMO

Soil phytoextraction is based on the ability of plants to extract contaminants from the soil. For less bioavailable metals, such as Pb, a chelator is added to the soil to mobilize the metal. The effect can be significant and in certain species, heavy metal accumulation can rapidly increase 10-fold. Accumulation of high levels of toxic metals may result in irreversible damage to the plant. Monitoring and controlling the phytotoxicity caused by EDTA-induced metal accumulation is crucial to optimize the remedial process, i.e. to achieve maximum uptake. We describe an EDTA-application procedure that minimizes phytotoxicity by increasing plant tolerance and allows phytoextraction of elevated levels of Pb and Cd. Brassica juncea is tested in soil with typical Pb and Cd concentrations of 500 mg kg-1 and 15 mg kg-1, respectively. Instead of a single dose treatment, the chelator is applied in multiple doses, that is, in several small increments, thus providing time for plants to initiate their adaptation mechanisms and raise their damage threshold. In situ monitoring of plant stress conditions by chlorophyll fluorescence recording allows for the identification of the saturating heavy metal accumulation process and of simultaneous plant deterioration.


Assuntos
Adaptação Fisiológica/fisiologia , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Solo/análise , Adaptação Fisiológica/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biomarcadores , Cádmio/metabolismo , Ácido Edético/farmacologia , Ambiente Controlado , Chumbo/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas/efeitos dos fármacos
8.
Oecologia ; 131(4): 498-505, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-28547543

RESUMO

Tortula ruralis is a homoiochlorophyllous-desiccation-tolerant (HDT) moss that retains all pigments when dehydrated and rapidly recovers physiological function upon rehydration. This moss forms extensive cover in exposed and shaded areas in the sandy semi-arid grasslands of Central Europe. We hypothesized that contrasting drying regimes between these microhabitats would affect plant N status, constraints to gas exchange and growth, as well as result in altered pigment concentrations and ratios, and photochemical light-response dynamics. Furthermore, we believed T. ruralis's HDT habit would limit its ability to acclimate to altered light environment. We found that sun plant T. ruralis had lower plant mass, as well as lower tissue N, C, total photosynthetic pigment concentrations and carbon isotope discrimination (Δ) values compared to shade plant counterparts. Carotenoid/chlorophyll ratios in sun plants were typical of high light-adapted tissue, but chlorophyll a/chlorophyll b ratios were lower, more characteristic of low light-adapted tissue. This unique combination of pigment responses was accompanied by sustained lower levels of optimal quantum efficiency of PSII (F v/F m) in sun plant T. ruralis, even during favorable diurnal conditions, and reduced engagement of energy-dependent thermal dissipation (NPQ). Reciprocal transplants of sun and shade plants showed that T. ruralis is capable of short-term adjustment to altered light level, as evidenced by increases in F v/F m, NPQ, and light-adapted PSII yield (φPSII) in transplanted sun plants, and concurrent decreases in sun-transplanted shade plants. However, the performance of transplanted sun plants remained consistently below that of undisturbed shade plants. These findings show that microenvironmental variation results in different patterns of resource acquisition in this HDT moss, and that growth in the open imparts greater desiccation tolerance, and the development of a greater standing engagement of slowly reversing photoprotective mechanisms. In contrast, prolonged activity and greater resource acquisition in shaded populations may allow T. ruralis to rapidly adjust to changes following disturbance to the plant canopy, fostering the persistence of T. ruralis in these semi-arid grasslands.

9.
New Phytol ; 133(2): 353-361, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29681071

RESUMO

We report the changes in CO2 assimilation, potential photochemical activity (as measured by slow fluorescence), photosynthetic pigment concentrations, and dark respiration of two desiccation-tolerant (DT) lichens (Cladonia convoluta (Lam.) P. Cout. and C. furcata (Huds.) Schrad.), and a DT moss (Tortula ruralis (Hedw.) Gaertn. ssp. ruralis) during slow drying, and on rehydration following a 12 h period of desiccation. Initially there was a two to fourfold increase in net CO., assimilation due to reduction of CO2 -diffusion resistance by elimination of excess water. Optimum water content for photosynthesis was 100-150 % of dry mass (DM) in C. convoluta, c. 100 % DM in C. furcata, and 120-200 % DM in T. ruralis. The intensity of maximum and steady-state slow fluorescence showed little change above water contents of 56%, DM in the lichens and 73 % DM in T. ruralis (corresponding to c. 30-40 % cell relative water content), but fell sharply at lower water content. The variable duorophyll-fluorescence decrease ratio (Rfd) at 690 nm peaked at 56 % DM water content in the two lichens, and at 45% DM in T. ruralis. Photochemical activity ceased at the same point in the experiments as CO, assimilation; dark respiration ceased only when desiccation was complete. In all three species, the photosynthetic apparatus remained in a fully and quickly recoverable state. Chlorophyll and carotenoid concentrations remained substantially unaltered throughout. On rehydration, chlorophyll fluorescence parameters returned within 30 min to pre-desiccation levels, and photosynthesis recovered fully and rapidly (< 1 h). All three species attained a positive carbon balance within 20 min of re-moistening, in spite of high rates of dark respiration. The results confirm the significance of extracellularly-stored water to poikilohydric DT lichens and bryophytes. The measurements, in conjunction with published data on the full-turgor water content of similar mosses and lichens, show that the cell-physiological response of photosynthesis to water deficit is not greatly different from that of either normal or DT vascular plants. Small plant size and small cell volume in DT lichens and mosses, together with rapid recovery of photosynthesis after desiccation, allow the plants to utilize the small amounts of intermittently available water from brief showers or dew.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...