Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(D1): D355-D360, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33119751

RESUMO

Protein and lipid membrane interactions play fundamental roles in a large number of cellular processes (e.g. signalling, vesicle trafficking, or viral invasion). A growing number of examples indicate that such interactions can also rely on intrinsically disordered protein regions (IDRs), which can form specific reversible interactions not only with proteins but also with lipids. We named IDRs involved in such membrane lipid-induced disorder-to-order transition as MemMoRFs, in an analogy to IDRs exhibiting disorder-to-order transition upon interaction with protein partners termed Molecular Recognition Features (MoRFs). Currently, both the experimental detection and computational characterization of MemMoRFs are challenging, and information about these regions are scattered in the literature. To facilitate the related investigations we generated a comprehensive database of experimentally validated MemMoRFs based on manual curation of literature and structural data. To characterize the dynamics of MemMoRFs, secondary structure propensity and flexibility calculated from nuclear magnetic resonance chemical shifts were incorporated into the database. These data were supplemented by inclusion of sentences from papers, functional data and disease-related information. The MemMoRF database can be accessed via a user-friendly interface at https://memmorf.hegelab.org, potentially providing a central resource for the characterization of disordered regions in transmembrane and membrane-associated proteins.


Assuntos
Membrana Celular/metabolismo , Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Fases de Leitura Aberta/genética , Internet , Espectroscopia de Ressonância Magnética , Ligação Proteica
2.
Methods Mol Biol ; 2112: 123-130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006282

RESUMO

Transmembrane proteins include membrane channels, pores, and receptors and, as such, comprise an important part of the proteome, yet our knowledge about them is much less complete than about soluble, globular proteins. An important aspect of transmembrane protein structure is their exact position within the lipid bilayer, a feature hard to investigate experimentally at the atomic level. Here we describe MemBlob, a novel approach utilizing difference electron density maps obtained by cryo-EM studies of transmembrane proteins. The idea behind is that the nonprotein part of such maps carries information on the exact localization of the membrane mimetics used in the experiment and can be used to extract the positional information of the protein within the membrane. MemBlob uses a structural model of the protein and an experimental electron density map to provide an estimation of the surface residues interacting with the membrane.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Bicamadas Lipídicas/química , Conformação Proteica , Domínios Proteicos
3.
Bioinformatics ; 36(8): 2595-2598, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31290936

RESUMO

SUMMARY: The identification of transmembrane helices in transmembrane proteins is crucial, not only to understand their mechanism of action but also to develop new therapies. While experimental data on the boundaries of membrane-embedded regions are sparse, this information is present in cryo-electron microscopy (cryo-EM) density maps and it has not been utilized yet for determining membrane regions. We developed a computational pipeline, where the inputs of a cryo-EM map, the corresponding atomistic structure, and the potential bilayer orientation determined by TMDET algorithm of a given protein result in an output defining the residues assigned to the bulk water phase, lipid interface and the lipid hydrophobic core. Based on this method, we built a database involving published cryo-EM protein structures and a server to be able to compute this data for newly obtained structures. AVAILABILITY AND IMPLEMENTATION: http://memblob.hegelab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteínas de Membrana , Microscopia Crioeletrônica , Modelos Moleculares , Estrutura Secundária de Proteína
4.
Comput Struct Biotechnol J ; 16: 396-403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425800

RESUMO

An increasing number of ABC membrane protein structures are determined by cryo-electron microscopy and X-ray crystallography, consequently identifying differences between their conformations has become an arising issue. Therefore, we propose to define standardized measures for ABC Type I exporter structure characterization. We set conformational vectors, conftors, which describe the relative orientation of domains and can highlight structural differences. In addition, continuum electrostatics calculations were performed to characterize the energetics of membrane insertion illuminating functionally crucial regions. In summary, the proposed metrics contribute to deeper understanding of ABC membrane proteins' structural features, structure validation, and analysis of movements observed in a molecular dynamics trajectory. Moreover, the concept of standardized metrics can be applied not only to ABC membrane protein structures (http://conftors.hegelab.org).

5.
ACS Chem Neurosci ; 9(12): 2997-3006, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29944336

RESUMO

The therapeutic targeting of intrinsically disordered proteins (IDPs) by small molecules has been a challenge due to their heterogeneous conformational ensembles. A potential therapeutic strategy to alleviate the aggregation of IDPs is to maintain them in their native monomeric state by small molecule binding. This study investigates the structural basis of small molecule druggability of native monomeric Tau whose aggregation is linked to the onset of Tauopathies such as Alzheimer's disease. Initially, two available monomeric conformational ensembles of a shorter Tau construct K18 (also termed Tau4RD) were analyzed which revealed striking structural differences between the two ensembles, while similar number of hot spots and small molecule binding sites were identified on monomeric Tau ensembles as on tertiary folded proteins of similar size. Remarkably, some critical fibril forming sequence regions of Tau (V306-K311, V275-K280) participated in hot spot formation with higher frequency compared to other regions. As an example of small molecule binding to monomeric Tau, it was shown that methylene blue (MB) bound to monomeric K18 and full-length Tau selectively with high affinity (Kd = 125.8 nM and 86.6 nM, respectively) with binding modes involving Cys291 and Cys322, previously reported to be oxidized in the presence of MB. Overall, our results provide structure-based evidence that Tau can be a viable drug target for small molecules and indicate that specific small molecules may be able to bind to monomeric Tau and influence the way in which the protein interacts among itself and with other proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Azul de Metileno/metabolismo , Proteínas tau/metabolismo , Humanos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Emaranhados Neurofibrilares/metabolismo , Estrutura Terciária de Proteína , Tauopatias/metabolismo , Proteínas tau/química , Proteínas tau/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...