Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 171(4): 453-462, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26503856

RESUMO

Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Müller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra measured with the TRITEL instrument were compared with the count rates measured with the GM counters. The experiences and results gained in the frame of the project will be used in the evaluation of TRITEL data from measurements on board the International Space Station. As an outlook a short overview is given of the planned rocket radiation experiments based on the system used in the BEXUS programme.


Assuntos
Radiação Cósmica , Monitoramento de Radiação/métodos , Astronave/instrumentação , Dosimetria Termoluminescente/métodos , Aeronaves , Humanos , Transferência Linear de Energia , Distribuição Normal , Doses de Radiação , Radiometria , Silício , Atividade Solar , Voo Espacial , Telescópios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...